Spark产生小文件的原因及解决方案

一、小文件的定义

Hadoop集群中的文件都是以块(Block)的形式存储在分布式文件系统(HDFS)中的,而Block的默认大小设置随着Hadoop的版本迭代经历了64MB、128MB、256MB,其大小实际受制于磁盘/网络的传输速率。当Block的大小为128MB时,若一个文件的大小显著小于128MB,我们就称之为小文件。

二、小文件产生过多的原因

  1. **写操作不当:**如果在写数据时,设置的分区策略不当,或者没有指定合适的压缩策略,则可能产生大量小文件。
  2. **数据倾斜:**如果spark任务处理的数据,某一个分区的数据量远远大于其他分区时,可能会导致该分区产生大量小文件。
  3. 其他待验证原因。

三、小文件过多的影响

  1. **对NameNode产生压力:**HDFS中的每个文件都需要在NameNode里维护一份元数据信息(文件目录、大小等信息),大量小文件则会占用过多的NameNode内存,影响集群稳定性。
  2. **增加文件读取时间:**如果某个表在HDFS中存放有大量的小文件,在访问该表获取数据时,需要先从NameNode获取元数据信息,再从DataNode读取对应数据,大量的小文件会导致频繁访问,影响读写效率。
  3. **容易导致task数量过多,且影响计算性能:**spark计算时,每个小文件通常被视为一个单独的分区,而spark会为每个分区启动一个或多个task来进行计算,大量小文件会导致启动过多的task,有可能导致内存超出报错(Total size of serialized results of * tasks is bigger than spark.driver.maxResultSize);其次,每个task的启动和销毁也会消耗时间,影响效率。

四、小文件合并方案

  • distribute by rand()

distribute by可以确保相同键值的数据分配到相同的分区中,减少数据的移动,提高聚合、连接、排序等操作的效率。

sql 复制代码
--默认N = 1
insert overwrite table table_target 
select * from table_source distribute by rand();

--更精准的做法,N为正整数,由:文件大小(MB)/128(MB) 得出
insert overwrite table table_target 
select * from table_source distribute by ceil(rand() * N);
  • repartition

repartition只是coalesce接口中shuffle为true的简易实现,对数据进行重新分区,由于开启了shuffle,所以既可以扩大分区数,也可以缩小分区数,缺点是会有磁盘操作,性能差些

sql 复制代码
--N为重新分区的个数,正整数,由:文件大小(MB)/128(MB) 得出
insert overwrite table table_target 
select /*+ repartition(N) */ * from table_source;
  • 开发额外的小文件压缩程序,用于日常的小文件压缩
相关推荐
SelectDB技术团队18 分钟前
Apache Doris 2.1.9 版本正式发布
大数据·数据仓库·数据分析·doris·数据湖·湖仓一体·日志数据
gegeyanxin1 小时前
flink异步读写外部数据源
大数据·flink·异步io·访问外部数据
IT观察1 小时前
Spark 2.0携手Solcore:AI重构去中心化质押算力生态 !
人工智能·重构·spark
说私域2 小时前
定制开发开源AI智能名片S2B2C商城小程序:技术赋能商业价值实现路径研究
大数据·人工智能·小程序·开源
Elastic 中国社区官方博客2 小时前
Elasticsearch:使用机器学习生成筛选器和分类标签
大数据·人工智能·elasticsearch·机器学习·搜索引擎·ai·分类
清风19812 小时前
kafka消息可靠性传输语义
数据库·分布式·kafka
小诸葛的博客2 小时前
Kafka、RocketMQ、Pulsar对比
分布式·kafka·rocketmq
zhangjin12223 小时前
kettle插件-postgresql插件
大数据·postgresql·etl·kettle cdc·kettle插件·kettle实时数据同步
数据智能老司机5 小时前
CockroachDB权威指南——SQL调优
数据库·分布式·架构
数据智能老司机5 小时前
CockroachDB权威指南——应用设计与实现
数据库·分布式·架构