Spark产生小文件的原因及解决方案

一、小文件的定义

Hadoop集群中的文件都是以块(Block)的形式存储在分布式文件系统(HDFS)中的,而Block的默认大小设置随着Hadoop的版本迭代经历了64MB、128MB、256MB,其大小实际受制于磁盘/网络的传输速率。当Block的大小为128MB时,若一个文件的大小显著小于128MB,我们就称之为小文件。

二、小文件产生过多的原因

  1. **写操作不当:**如果在写数据时,设置的分区策略不当,或者没有指定合适的压缩策略,则可能产生大量小文件。
  2. **数据倾斜:**如果spark任务处理的数据,某一个分区的数据量远远大于其他分区时,可能会导致该分区产生大量小文件。
  3. 其他待验证原因。

三、小文件过多的影响

  1. **对NameNode产生压力:**HDFS中的每个文件都需要在NameNode里维护一份元数据信息(文件目录、大小等信息),大量小文件则会占用过多的NameNode内存,影响集群稳定性。
  2. **增加文件读取时间:**如果某个表在HDFS中存放有大量的小文件,在访问该表获取数据时,需要先从NameNode获取元数据信息,再从DataNode读取对应数据,大量的小文件会导致频繁访问,影响读写效率。
  3. **容易导致task数量过多,且影响计算性能:**spark计算时,每个小文件通常被视为一个单独的分区,而spark会为每个分区启动一个或多个task来进行计算,大量小文件会导致启动过多的task,有可能导致内存超出报错(Total size of serialized results of * tasks is bigger than spark.driver.maxResultSize);其次,每个task的启动和销毁也会消耗时间,影响效率。

四、小文件合并方案

  • distribute by rand()

distribute by可以确保相同键值的数据分配到相同的分区中,减少数据的移动,提高聚合、连接、排序等操作的效率。

sql 复制代码
--默认N = 1
insert overwrite table table_target 
select * from table_source distribute by rand();

--更精准的做法,N为正整数,由:文件大小(MB)/128(MB) 得出
insert overwrite table table_target 
select * from table_source distribute by ceil(rand() * N);
  • repartition

repartition只是coalesce接口中shuffle为true的简易实现,对数据进行重新分区,由于开启了shuffle,所以既可以扩大分区数,也可以缩小分区数,缺点是会有磁盘操作,性能差些

sql 复制代码
--N为重新分区的个数,正整数,由:文件大小(MB)/128(MB) 得出
insert overwrite table table_target 
select /*+ repartition(N) */ * from table_source;
  • 开发额外的小文件压缩程序,用于日常的小文件压缩
相关推荐
宇神城主_蒋浩宇几秒前
最简单的es理解 数据库视角看写 ES 加 java正删改查深度分页
大数据·数据库·elasticsearch
小小王app小程序开发42 分钟前
盲盒随机赏小程序核心玩法拆解与运营逻辑分析
大数据·小程序
许国栋_42 分钟前
产品管理系统怎么选?2026主流工具横评、场景适配与避坑
大数据·安全·阿里云·云计算·团队开发
说私域1 小时前
AI智能名片链动2+1模式小程序在消费者商家全链路互动中的应用研究
大数据·人工智能·小程序·流量运营·私域运营
shepherd1261 小时前
深度剖析SkyWalking:从内核原理到生产级全链路监控实战
分布式·后端·skywalking
newsxun1 小时前
申晨案例解析:解码猫王如何从情怀走向现象级品牌的“熊猫罗盘”重塑之路
大数据·人工智能
你喜欢喝可乐吗?1 小时前
大数据生活实例故事
大数据
SeatuneWrite1 小时前
**AI漫剧软件2025推荐,解锁沉浸式二次元内容创作新体验
大数据·人工智能·python
Hello.Reader1 小时前
Flink 进程三种配置方式、JVM 参数映射与常见踩坑
大数据·jvm·flink
前进的程序员1 小时前
智能融合终端的技术革新与应用实践
大数据·人工智能