CV2不同图像插值方式的区别

  1. 最近邻插值(Nearest-neighbor interpolation,cv2.INTER_NEAREST):

    • 基于最近的像素值进行插值。
    • 简单快速,但可能会产生锯齿状的边缘。
    • 通常用于图像放大时速度要求较高的情况。
  2. 双线性插值(Bilinear interpolation,cv2.INTER_LINEAR):

    • 基于周围4个像素的加权平均进行插值。
    • 计算速度较快,输出图像质量较好。
    • 通常用于缩小图像。
  3. 双三次插值(Bicubic interpolation,cv2.INTER_CUBIC):

    • 基于周围16个像素的加权平均进行插值。
    • 计算复杂度较高,输出图像质量较好。
    • 通常用于放大图像。
  4. 区域插值(Area-based resampling,cv2.INTER_AREA):

    • 基于区域像素的重采样,通常用于缩小图像。
    • 在缩小图像时,它采用像素区域关系,根据相邻像素的关系计算像素值。
    • 速度较快,但可能导致图像失真。
  5. Lanczos 插值(Lanczos resampling,cv2.INTER_LANCZOS4):

    • 基于 Lanczos 插值算法进行插值,通常用于放大图像。
    • 计算复杂度较高,但输出图像质量较好。
    • 可以保持图像的细节和清晰度,适合放大图像并保持图像质量的需求。
相关推荐
CodeLove·逻辑情感实验室1 分钟前
深度解析:当 NLP 试图解构爱情——情感计算(Affective Computing)的伦理边界与技术瓶颈
人工智能·深度学习·自然语言处理·赛朋克
少林码僧22 分钟前
2.9 字段分箱技术详解:连续变量离散化,提升模型效果的关键步骤
人工智能·ai·数据分析·大模型
互联网工匠23 分钟前
从冯·诺依曼架构看CPU和GPU计算的区别
人工智能·gpu算力
爱笑的眼睛1125 分钟前
超越可视化:降维算法组件的深度解析与工程实践
java·人工智能·python·ai
GISer_Jing1 小时前
AI Agent 目标设定与异常处理
人工智能·设计模式·aigc
mahtengdbb11 小时前
YOLOv10n-ADown改进实现路面裂缝与坑洼检测_计算机视觉_目标检测_道路维护_智能检测系统
yolo·目标检测·计算机视觉
Fnetlink11 小时前
AI+零信任:关键基础设施安全防护新范式
人工智能·安全
njsgcs1 小时前
SIMA2 论文阅读 Google 任务设定器、智能体、奖励模型
人工智能·笔记
机器之心1 小时前
2026年,大模型训练的下半场属于「强化学习云」
人工智能·openai
ai_top_trends1 小时前
2026 年工作计划 PPT 横评:AI 自动生成的优劣分析
人工智能·python·powerpoint