CV2不同图像插值方式的区别

  1. 最近邻插值(Nearest-neighbor interpolation,cv2.INTER_NEAREST):

    • 基于最近的像素值进行插值。
    • 简单快速,但可能会产生锯齿状的边缘。
    • 通常用于图像放大时速度要求较高的情况。
  2. 双线性插值(Bilinear interpolation,cv2.INTER_LINEAR):

    • 基于周围4个像素的加权平均进行插值。
    • 计算速度较快,输出图像质量较好。
    • 通常用于缩小图像。
  3. 双三次插值(Bicubic interpolation,cv2.INTER_CUBIC):

    • 基于周围16个像素的加权平均进行插值。
    • 计算复杂度较高,输出图像质量较好。
    • 通常用于放大图像。
  4. 区域插值(Area-based resampling,cv2.INTER_AREA):

    • 基于区域像素的重采样,通常用于缩小图像。
    • 在缩小图像时,它采用像素区域关系,根据相邻像素的关系计算像素值。
    • 速度较快,但可能导致图像失真。
  5. Lanczos 插值(Lanczos resampling,cv2.INTER_LANCZOS4):

    • 基于 Lanczos 插值算法进行插值,通常用于放大图像。
    • 计算复杂度较高,但输出图像质量较好。
    • 可以保持图像的细节和清晰度,适合放大图像并保持图像质量的需求。
相关推荐
打码人的日常分享23 分钟前
基于信创体系政务服务信息化建设方案(PPT)
大数据·服务器·人工智能·信息可视化·架构·政务
硬汉嵌入式1 小时前
专为 MATLAB 优化的 AI 助手MATLAB Copilot
人工智能·matlab·copilot
北京盛世宏博1 小时前
如何利用技术手段来甄选一套档案馆库房安全温湿度监控系统
服务器·网络·人工智能·选择·档案温湿度
搞科研的小刘选手1 小时前
【EI稳定】检索第六届大数据经济与信息化管理国际学术会议(BDEIM 2025)
大数据·人工智能·经济
GISer_Jing1 小时前
OpenCV头文件路径配置终极修复指南
javascript·opencv·webpack
半吊子全栈工匠1 小时前
软件产品的10个UI设计技巧及AI 辅助
人工智能·ui
机器之心2 小时前
真机RL!最强VLA模型π*0.6来了,机器人在办公室开起咖啡厅
人工智能·openai
机器之心2 小时前
马斯克Grok 4.1低调发布!通用能力碾压其他一切模型
人工智能·openai
一水鉴天2 小时前
整体设计 全面梳理复盘 之39 生态工具链 到顶级表征及其完全公理化
大数据·人工智能·算法
小和尚同志2 小时前
本地 AI Code Review 探索及落地
人工智能·aigc