CV2不同图像插值方式的区别

  1. 最近邻插值(Nearest-neighbor interpolation,cv2.INTER_NEAREST):

    • 基于最近的像素值进行插值。
    • 简单快速,但可能会产生锯齿状的边缘。
    • 通常用于图像放大时速度要求较高的情况。
  2. 双线性插值(Bilinear interpolation,cv2.INTER_LINEAR):

    • 基于周围4个像素的加权平均进行插值。
    • 计算速度较快,输出图像质量较好。
    • 通常用于缩小图像。
  3. 双三次插值(Bicubic interpolation,cv2.INTER_CUBIC):

    • 基于周围16个像素的加权平均进行插值。
    • 计算复杂度较高,输出图像质量较好。
    • 通常用于放大图像。
  4. 区域插值(Area-based resampling,cv2.INTER_AREA):

    • 基于区域像素的重采样,通常用于缩小图像。
    • 在缩小图像时,它采用像素区域关系,根据相邻像素的关系计算像素值。
    • 速度较快,但可能导致图像失真。
  5. Lanczos 插值(Lanczos resampling,cv2.INTER_LANCZOS4):

    • 基于 Lanczos 插值算法进行插值,通常用于放大图像。
    • 计算复杂度较高,但输出图像质量较好。
    • 可以保持图像的细节和清晰度,适合放大图像并保持图像质量的需求。
相关推荐
Jeremy_lf3 分钟前
【生成模型之三】ControlNet & Latent Diffusion Models论文详解
人工智能·深度学习·stable diffusion·aigc·扩散模型
桃花键神40 分钟前
AI可信论坛亮点:合合信息分享视觉内容安全技术前沿
人工智能
野蛮的大西瓜1 小时前
开源呼叫中心中,如何将ASR与IVR菜单结合,实现动态的IVR交互
人工智能·机器人·自动化·音视频·信息与通信
CountingStars6191 小时前
目标检测常用评估指标(metrics)
人工智能·目标检测·目标跟踪
tangjunjun-owen2 小时前
第四节:GLM-4v-9b模型的tokenizer源码解读
人工智能·glm-4v-9b·多模态大模型教程
冰蓝蓝2 小时前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
橙子小哥的代码世界2 小时前
【计算机视觉基础CV-图像分类】01- 从历史源头到深度时代:一文读懂计算机视觉的进化脉络、核心任务与产业蓝图
人工智能·计算机视觉
新加坡内哥谈技术2 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
小陈phd3 小时前
OpenCV学习——图像融合
opencv·计算机视觉·cv
fanstuck3 小时前
Prompt提示工程上手指南(七)Prompt编写实战-基于智能客服问答系统下的Prompt编写
人工智能·数据挖掘·openai