CV2不同图像插值方式的区别

  1. 最近邻插值(Nearest-neighbor interpolation,cv2.INTER_NEAREST):

    • 基于最近的像素值进行插值。
    • 简单快速,但可能会产生锯齿状的边缘。
    • 通常用于图像放大时速度要求较高的情况。
  2. 双线性插值(Bilinear interpolation,cv2.INTER_LINEAR):

    • 基于周围4个像素的加权平均进行插值。
    • 计算速度较快,输出图像质量较好。
    • 通常用于缩小图像。
  3. 双三次插值(Bicubic interpolation,cv2.INTER_CUBIC):

    • 基于周围16个像素的加权平均进行插值。
    • 计算复杂度较高,输出图像质量较好。
    • 通常用于放大图像。
  4. 区域插值(Area-based resampling,cv2.INTER_AREA):

    • 基于区域像素的重采样,通常用于缩小图像。
    • 在缩小图像时,它采用像素区域关系,根据相邻像素的关系计算像素值。
    • 速度较快,但可能导致图像失真。
  5. Lanczos 插值(Lanczos resampling,cv2.INTER_LANCZOS4):

    • 基于 Lanczos 插值算法进行插值,通常用于放大图像。
    • 计算复杂度较高,但输出图像质量较好。
    • 可以保持图像的细节和清晰度,适合放大图像并保持图像质量的需求。
相关推荐
周杰伦_Jay5 分钟前
【BGE-M3与主流RAG嵌入模型】知识库嵌入模型对比
人工智能·机器学习·eureka·开源·github
Gavin在路上8 分钟前
AI学习之Anthropic的访谈者工具
人工智能·学习
裤裤兔13 分钟前
早停法(Early_Stopping)
人工智能·深度学习
FserSuN21 分钟前
Anthropic文章-打造高性能智能体 学习笔记
人工智能
SaaS_Product22 分钟前
有没有像OneDrive一样的自动同步网盘?
人工智能·云计算·saas·onedrive
我是宝库25 分钟前
Turnitin系统查英文AI率多少为正常?报告显示星号*%怎么办?
人工智能·经验分享·aigc·毕业论文·英文专业·turnitin系统·英文查重
c骑着乌龟追兔子25 分钟前
Day 39 MLP神经网络的训练
人工智能·深度学习·神经网络
infiniteWei29 分钟前
【技术人如何用爬虫+机器学习识别并屏蔽恶意广告】第1课:爬虫与广告反欺诈入门
人工智能·爬虫·机器学习
夏天是冰红茶43 分钟前
小目标检测:LAM-YOLO详解
人工智能·yolo·目标检测
般若Neo1 小时前
【AI通识】生成式人工智能通识
人工智能·aigc·生成式ai