CV2不同图像插值方式的区别

  1. 最近邻插值(Nearest-neighbor interpolation,cv2.INTER_NEAREST):

    • 基于最近的像素值进行插值。
    • 简单快速,但可能会产生锯齿状的边缘。
    • 通常用于图像放大时速度要求较高的情况。
  2. 双线性插值(Bilinear interpolation,cv2.INTER_LINEAR):

    • 基于周围4个像素的加权平均进行插值。
    • 计算速度较快,输出图像质量较好。
    • 通常用于缩小图像。
  3. 双三次插值(Bicubic interpolation,cv2.INTER_CUBIC):

    • 基于周围16个像素的加权平均进行插值。
    • 计算复杂度较高,输出图像质量较好。
    • 通常用于放大图像。
  4. 区域插值(Area-based resampling,cv2.INTER_AREA):

    • 基于区域像素的重采样,通常用于缩小图像。
    • 在缩小图像时,它采用像素区域关系,根据相邻像素的关系计算像素值。
    • 速度较快,但可能导致图像失真。
  5. Lanczos 插值(Lanczos resampling,cv2.INTER_LANCZOS4):

    • 基于 Lanczos 插值算法进行插值,通常用于放大图像。
    • 计算复杂度较高,但输出图像质量较好。
    • 可以保持图像的细节和清晰度,适合放大图像并保持图像质量的需求。
相关推荐
一只乔哇噻12 分钟前
java后端工程师+AI大模型进修ing(研一版‖day55)
人工智能
小毅&Nora40 分钟前
【AI微服务】【Spring AI Alibaba】② Agent 深度实战:构建可记忆、可拦截、可流式的智能体系统
人工智能·微服务·spring-ai
陈天伟教授1 小时前
基于学习的人工智能(7)机器学习基本框架
人工智能·学习
千里念行客2402 小时前
昂瑞微正式启动科创板IPO发行
人工智能·科技·信息与通信·射频工程
撸码猿2 小时前
《Python AI入门》第10章 拥抱AIGC——OpenAI API调用与Prompt工程实战
人工智能·python·aigc
双翌视觉2 小时前
双翌全自动影像测量仪:以微米精度打造智能化制造
人工智能·机器学习·制造
编程小白_正在努力中3 小时前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
无风听海3 小时前
神经网络之经验风险最小化
人工智能·深度学习·神经网络
音视频牛哥3 小时前
轻量级RTSP服务的工程化设计与应用:从移动端到边缘设备的实时媒体架构
人工智能·计算机视觉·音视频·音视频开发·rtsp播放器·安卓rtsp服务器·安卓实现ipc功能
该用户已不存在4 小时前
在 Gemini CLI 中使用 Gemini 3 Pro 实操指南
人工智能·ai编程·gemini