深度学习入门:传统神经网络(前馈型神经网络、反馈型神经网络和自组织神经网络)

传统神经网络是相对于其他类型的神经网络,如卷积神经网络(CNN)、循环神经网络(RNN)、图神经网络(GNN)等而言的。这些不同类型的神经网络都是为了解决不同的问题而设计的,它们各自具有独特的结构和特点。

传统神经网络的结构设计相对简洁,其工作原理在训练过程中得以充分体现。在训练之初,神经网络的参数通常会被随机初始化,这些参数代表了网络中各个神经元之间的连接权重。随后,训练过程开始,网络进入一个循环计算的状态。在这个过程中,神经网络会根据当前的参数设置,计算并输出对应的结果。这些输出结果随后会与真实的目标值进行比较,从而得出一个损失函数的值。损失函数反映了网络输出与实际目标之间的差距,是优化网络性能的关键指标。

神经网络的训练目标,本质上就是寻找一个能够最小化损失函数的模型。为了实现这一目标,网络会采用一系列的学习算法,不断地调整自身的连接权重。这种学习过程是在外界输入样本的刺激下进行的,每一次样本的输入都会引发网络内部权重的更新,使得网络的输出逐渐逼近真实的目标值。

根据学习方式和网络结构的不同,传统神经网络主要可以分为三类:前馈型神经网络、反馈型神经网络和自组织神经网络。前馈型神经网络是一种单向传递信息的网络,其信息从输入层开始,逐层向前传播,直至输出层。反馈型神经网络则具有更复杂的结构,其神经元之间不仅存在前向连接,还存在反馈连接,使得网络能够处理更加复杂的问题。自组织神经网络则是一种无监督学习网络,它能够通过自我学习和组织,形成对输入数据的特征表示。

这些不同类型的神经网络,各自拥有独特的学习训练算法。这些算法可以归结为两大类:监督型学习算法和非监督型学习算法。监督型学习算法需要在训练过程中提供带有标签的样本数据,网络会根据这些数据调整自身的参数,以最小化输出与标签之间的差距。而非监督型学习算法则不需要标签数据,它们会根据输入数据的内在结构和特征,自动地进行网络参数的调整。

综上,传统神经网络通过其简洁的结构和灵活的学习算法,能够在不同的任务场景中展现出强大的学习能力。无论是前馈型、反馈型还是自组织神经网络,它们都在各自的领域发挥着重要的作用,为人工智能和机器学习领域的发展提供了有力的支持。

参考文献

神经网络基础.赵卫东.复旦大学

相关推荐
2401_84149564几秒前
【自然语言处理】关系性形容词的特征
人工智能·python·自然语言处理·自动识别·特征验证·关系性形容词·语言学规则和计算
rebekk7 分钟前
Hydra介绍
人工智能·python
我不是小upper8 分钟前
从理论到代码:随机森林 + GBDT+LightGBM 融合建模解决回归问题
人工智能·深度学习·算法·随机森林·机器学习·回归
Faker66363aaa12 分钟前
CornerNet-Hourglass104生产线检测与分类-1模型训练与部署
人工智能·分类·数据挖掘
YANshangqian14 分钟前
高性能AI聊天工具
人工智能
donecoding15 分钟前
前端AI开发:为什么选择SSE,它与分块传输编码有何不同?axios能处理SSE吗?
前端·人工智能
安徽正LU o561-6o623o717 分钟前
露-Y迷宫刺激器 AI人工智能Y迷宫
人工智能
说私域21 分钟前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的社群初期运营策略研究
人工智能·小程序