深度学习入门:传统神经网络(前馈型神经网络、反馈型神经网络和自组织神经网络)

传统神经网络是相对于其他类型的神经网络,如卷积神经网络(CNN)、循环神经网络(RNN)、图神经网络(GNN)等而言的。这些不同类型的神经网络都是为了解决不同的问题而设计的,它们各自具有独特的结构和特点。

传统神经网络的结构设计相对简洁,其工作原理在训练过程中得以充分体现。在训练之初,神经网络的参数通常会被随机初始化,这些参数代表了网络中各个神经元之间的连接权重。随后,训练过程开始,网络进入一个循环计算的状态。在这个过程中,神经网络会根据当前的参数设置,计算并输出对应的结果。这些输出结果随后会与真实的目标值进行比较,从而得出一个损失函数的值。损失函数反映了网络输出与实际目标之间的差距,是优化网络性能的关键指标。

神经网络的训练目标,本质上就是寻找一个能够最小化损失函数的模型。为了实现这一目标,网络会采用一系列的学习算法,不断地调整自身的连接权重。这种学习过程是在外界输入样本的刺激下进行的,每一次样本的输入都会引发网络内部权重的更新,使得网络的输出逐渐逼近真实的目标值。

根据学习方式和网络结构的不同,传统神经网络主要可以分为三类:前馈型神经网络、反馈型神经网络和自组织神经网络。前馈型神经网络是一种单向传递信息的网络,其信息从输入层开始,逐层向前传播,直至输出层。反馈型神经网络则具有更复杂的结构,其神经元之间不仅存在前向连接,还存在反馈连接,使得网络能够处理更加复杂的问题。自组织神经网络则是一种无监督学习网络,它能够通过自我学习和组织,形成对输入数据的特征表示。

这些不同类型的神经网络,各自拥有独特的学习训练算法。这些算法可以归结为两大类:监督型学习算法和非监督型学习算法。监督型学习算法需要在训练过程中提供带有标签的样本数据,网络会根据这些数据调整自身的参数,以最小化输出与标签之间的差距。而非监督型学习算法则不需要标签数据,它们会根据输入数据的内在结构和特征,自动地进行网络参数的调整。

综上,传统神经网络通过其简洁的结构和灵活的学习算法,能够在不同的任务场景中展现出强大的学习能力。无论是前馈型、反馈型还是自组织神经网络,它们都在各自的领域发挥着重要的作用,为人工智能和机器学习领域的发展提供了有力的支持。

参考文献

神经网络基础.赵卫东.复旦大学

相关推荐
浠寒AI2 小时前
智能体模式篇(上)- 深入 ReAct:LangGraph构建能自主思考与行动的 AI
人工智能·python
weixin_505154462 小时前
数字孪生在建设智慧城市中可以起到哪些作用或帮助?
大数据·人工智能·智慧城市·数字孪生·数据可视化
Best_Me072 小时前
深度学习模块缝合
人工智能·深度学习
YuTaoShao2 小时前
【论文阅读】YOLOv8在单目下视多车目标检测中的应用
人工智能·yolo·目标检测
算家计算3 小时前
字节开源代码模型——Seed-Coder 本地部署教程,模型自驱动数据筛选,让每行代码都精准落位!
人工智能·开源
伪_装3 小时前
大语言模型(LLM)面试问题集
人工智能·语言模型·自然语言处理
gs801403 小时前
Tavily 技术详解:为大模型提供实时搜索增强的利器
人工智能·rag
music&movie3 小时前
算法工程师认知水平要求总结
人工智能·算法
狂小虎4 小时前
亲测解决self.transform is not exist
python·深度学习
量子位4 小时前
苹果炮轰推理模型全是假思考!4 个游戏戳破神话,o3/DeepSeek 高难度全崩溃
人工智能·deepseek