聊聊最近“大火”的RAG

背景

LLM支持的最强大的应用程序之一是复杂的问答(Q&A)聊天机器人。这些应用程序(聊天机器人)可以回答有关特定来源信息的问题。其中使用的技术就是一种称为检索增强生成(RAG)的技术。

本文不涉及代码输出,纯概念解释说明。文末会贴出另一篇文章的地址,里面有代码。

什么是RAG

RAG是一种利用检索技术来增强大语言模型(LLM)的技术。它通过从某些数据源检索信息,并将这些信息作为上下文提供给LLM,从而改进生成的答案。

RAG的基本流程包括:

  1. 分块与向量化:将文本数据分割成块,并使用transformer编码器模型将这些块编码为向量,以便于搜索。

  2. 搜索索引:为这些向量建立索引,以便于快速检索。

  3. 重排和过滤:对检索到的信息进行排序和过滤,以提供最相关的上下文给LLM。

  4. 查询转换:将用户查询转换为模型可以理解的格式。

  5. 聊天引擎:用于与用户进行交互,接收用户输入并返回回答。

  6. 查询路由:决定哪些查询应该被发送到LLM进行回答。

  7. 智能体:负责协调各个组件,确保系统的顺畅运行。

  8. 响应合成:将LLM的输出与检索到的上下文合并,生成最终的回答。

RAG的优点在于它能够结合检索技术的准确性和LLM的生成能力,提供更加准确和丰富的回答。然而,它也面临一些挑战,如知识的局限性和数据安全性问题。知识的局限性意味着模型的知识仅限于其训练数据,可能无法覆盖所有领域的知识。数据安全性问题则涉及到将私域数据上传到第三方平台的风险,这对于注重数据安全的企业来说是一个重要的考虑因素。

简单来说就是:大模型对于没有学习过的知识是回答不了的,或者说回答不准确,不相关,利用RAG技术就可以很好的解决这种问题。

RAG架构

典型的RAG应用程序有两个主要组件:

  1. 索引:从外部数据源引入数据并制作索引。通常我们会预先处理好数据。

  2. 检索和生成:它需要用户在运行时查询并从索引中检索相关数据,然后将其传递给模型。

从原始数据到答案最常见的完整序列如下所示:

索引(Indexing)

  1. 加载(Load):首先我们需要加载数据。这是使用DocumentLoaders完成的。

  2. 切片(Split):文本 分离器将大块分成更小的块。这对于以下方面都很有用 索引数据并将其传递到模型,因为大块更难搜索,并且不适合模型有限的上下文窗口。

  3. 存储(Store):我们需要某个地方来存储和索引我们的拆分,以便以后可以搜索它们。这通常是使用VectorStore(向量数据库)和Embeddings(词嵌入)模型完成的。

检索和生成(Retrieval and generation)

  1. 检索(Retrieve):给定用户输入,使用Retriever从存储中检索相关切片。

  2. 生成(Generate):ChatModel / LLM使用包含问题和检索数据的提示。

实现自己的RAG应用

"智能客服"是RAG的典型应用之一,这块实际上已经介绍过了,看下面这篇文章就行。

【可能是全网最丝滑的LangChain教程】四、快速入门Retrieval Chain

相关推荐
江瀚视野5 分钟前
滴滴试点返程费自主议价将会怎么改变市场?
人工智能
木头左13 分钟前
基于LSTM与3秒级Tick数据的金融时间序列预测实现
人工智能·金融·lstm
aneasystone本尊22 分钟前
详解 Chat2Graph 的工具系统实现
人工智能
Billy_Zuo24 分钟前
人工智能深度学习——卷积神经网络(CNN)
人工智能·深度学习·cnn
ai产品老杨30 分钟前
解锁仓储智能调度、运输路径优化、数据实时追踪,全功能降本提效的智慧物流开源了
javascript·人工智能·开源·音视频·能源
羊羊小栈31 分钟前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业
l12345sy36 分钟前
Day24_【深度学习—广播机制】
人工智能·pytorch·深度学习·广播机制
IT古董39 分钟前
【第五章:计算机视觉-项目实战之图像分类实战】1.经典卷积神经网络模型Backbone与图像-(4)经典卷积神经网络ResNet的架构讲解
人工智能·计算机视觉·cnn
向往鹰的翱翔1 小时前
BKY莱德因:5大黑科技逆转时光
大数据·人工智能·科技·生活·健康医疗