机器学习模型——逻辑回归

https://blog.csdn.net/qq_41682922/article/details/85013008

https://blog.csdn.net/guoziqing506/article/details/81328402

https://www.cnblogs.com/cymx66688/p/11363163.html 参数详解

逻辑回归的引出:

数据线性可分可以使用线性分类器,如果数据线性不可分,可以使用非线性分类器。但是对于一个二分类问题,如果我们不仅想知道一个具体的样例是属于哪一类,而且还想知道该类属于某一类的概率多大,有什么办法呢?逻辑回归使用回归的思想来处理分类问题。

逻辑回归:

z= w_0+w_1x_1 + w_2x_2 + w_3x_3 + ... + w_nx_n

z的阈值处于(-∞,+ ∞),此时不能很好的给出属于某一类的概率,因为概率的范围在[0,1]之间,并且这个函数能够具有很好的可微分性。在这种需求下,人们找到了这个映射函数,即 Sigmoid 函数,其形式如下:

逻辑回归的目标函数 :

需求分析:对于一个二分类问题,我们关心的是根据自变量的值来对 Y 的取值 0 或 1 进行预测。

逻辑回归模型得到的只是 p{Y=1l x} 的预测概率。一般以0.5为界限,预测大于0.5时,我们判断此时 Y 更可能为1,否则认为 Y =0。

假设 Sigmoid 函数 Φ(z) 表示属于1类的概率, 于是做出如下的定义:

将两个式子综合起来可以改成为下式:

逻辑回归的损失函数 :

目的分析:因为逻辑回归是为了解决二分类问题,即我们的目的应该是求取参数 w 和 b 使得 p(y l x) 对 0 类和 1 类的分类结果尽可能取最大值。然而我们定义损失函数时往往是为了最大化的达到我们的目的的同时使所付出的代价最小 (损失函数最小)。于是很自然地在目的函数前加一个负号就得到了我们逻辑回归的损失函数:

根据损失函数是单个样本的预测值和实际值的误差,而成本函数是全部样本的预测值和实际值之间的误差,于是对所有样本的损失值取平均,得到我们的成本函数:

代码实现:

复制代码
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_wine
data = load_wine()
lr = LogisticRegression()

X = data.data
y = data.target

from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3)
lr.fit(X_train,y_train)

print(lr.predict(X_test))

print(lr.predict_proba(X_test))
相关推荐
无心水1 分钟前
【分布式利器:大厂技术】4、字节跳动高性能架构:Kitex+Hertz+BytePS,实时流与AI的极致优化
人工智能·分布式·架构·kitex·分布式利器·字节跳动分布式·byteps
阿正的梦工坊12 分钟前
DreamGym:通过经验合成实现代理学习的可扩展化
人工智能·算法·大模型·llm
湘-枫叶情缘21 分钟前
人脑生物芯片作为“数字修炼世界”终极载体的技术前景、伦理挑战与实现路径
人工智能
Aaron158835 分钟前
侦察、测向、识别、干扰一体化平台系统技术实现
人工智能·fpga开发·硬件架构·边缘计算·信息与通信·射频工程·基带工程
维维180-3121-145543 分钟前
作物模型的未来:DSSAT与机器学习、遥感及多尺度模拟的融合
人工智能·生态学·农业遥感·作物模型·地理学·农学
阿杰学AI1 小时前
AI核心知识38——大语言模型之Alignment(简洁且通俗易懂版)
人工智能·安全·ai·语言模型·aigc·ai对齐·alignment
xier_ran1 小时前
关键词解释:对比学习(Contrastive Learning)
人工智能·深度学习·学习·机器学习·对比学习
Jay20021112 小时前
【机器学习】27 异常检测(密度估计)
人工智能·机器学习
ziwu2 小时前
【岩石种类识别系统】Python+TensorFlow+Django+人工智能+深度学习+卷积神经网络算法
人工智能·深度学习·图像识别
AI即插即用2 小时前
即插即用系列 | CVPR SwiftFormer:移动端推理新王者!0.8ms 延迟下 ImageNet 78.5% 准确率,吊打 MobileViT
图像处理·人工智能·深度学习·目标检测·计算机视觉·cnn·视觉检测