目标点注意力Transformer:一种用于端到端自动驾驶的新型轨迹预测网络

目标点注意力Transformer:一种用于端到端自动驾驶的新型轨迹预测网络

附赠自动驾驶学习资料和量产经验:链接

摘要

本文介绍了目标点注意力Transformer:一种用于端到端自动驾驶的新型轨迹预测网络。在自动驾驶领域中,已经有很多优秀的感知模型,用于目标检测、语义分割和其它任务,但是我们如何可以有效地将感知模型用于车辆规划呢?传统的自动驾驶车辆轨迹预测方法不仅需要遵循交通规则以实现避障,还需要按照规定的路线到达目的地。在本文中,我们提出了一种无规则的基于transformer的轨迹预测网络用于端到端自动驾驶,称为目标点注意力Transformer网络(TAT)。我们使用注意力机制来实现预测轨迹与感知特征以及目标点之间的交互。我们证明了,本文所提出的方法优于现有的条件模仿学习和基于GRU的方法,显著地减少了事故的发生并且提高了路线完成率。我们使用CARLA仿真器在城市中复杂的闭环驾驶场景中评估了本文方法,并且实现最先进的性能。

主要贡献

本文的贡献总结如下:

1)本文所提出的目标点注意力Transformer模型利用了注意力机制来预测自动驾驶车辆的未来轨迹,从而显著减少了事故的发生,并且提高了路线完成率;

2)本文在CARLA上进行定量实验,对不同的轨迹预测方法进行比较和分析。实验结果证明了所提出方法的有效性。

论文图片和表格

总结

在本文中,我们提出了一种用于端到端自动驾驶的新型轨迹预测网络。我们证明了,现有的基于GRU的轨迹预测网络无法充分利用可用的感知特征。为了解决这一限制,本文提出了一种新型的轨迹预测网络,其利用Transformer的注意力机制与高维感知特征直接交互,并且在CARLA上实现了最先进的性能。本文方法通用且适应性强,我们计划通过探索新的感知网络来研究进一步的改进(例如独立的交通信号灯检测网络),以缓解闯红灯的问题。

相关推荐
Ada's2 小时前
深度学习在自动驾驶上应用(二)
人工智能·深度学习·自动驾驶
极度畅想3 小时前
【脑电分析系列】第24篇:运动想象BCI系统构建:CSP+LDA/SVM与深度学习方法的对比研究
transformer·eeg·bci·运动想象·脑电分析·意念控制
没有梦想的咸鱼185-1037-16634 小时前
【遥感技术】从CNN到Transformer:基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类
pytorch·python·深度学习·机器学习·数据分析·cnn·transformer
WangYan202211 小时前
Transformer模型/注意力机制/目标检测/语义分割/图神经网络/强化学习/生成式模型/自监督学习/物理信息神经网络等
人工智能·深度学习·transformer
一碗白开水一16 小时前
【第29话:路径规划】自动驾驶启发式搜索算法(A星搜索算法( A* 搜索算法))详解及代码举例说明
人工智能·算法·机器学习·计算机视觉·自动驾驶·unix
慧都小项18 小时前
Parasoft软件测试解决方案助力Renovo汽车ADAS开发安全与合规
自动驾驶·汽车软件·parasoft·renovo
顾道长生'1 天前
(Arxiv-2025)OmniInsert:无遮罩视频插入任意参考通过扩散 Transformer 模型
深度学习·音视频·transformer
deephub1 天前
从另一个视角看Transformer:注意力机制就是可微分的k-NN算法
人工智能·深度学习·transformer·注意力机制·knn
Sugar_pp1 天前
【论文阅读】Railway rutting defects detection based on improved RT‑DETR
论文阅读·深度学习·目标检测·transformer
韩曙亮1 天前
【自动驾驶】自动驾驶概述 ⑤ ( 自动驾驶硬件概述 | 车载计算单元 IPC | 车辆线控系统 )
自动驾驶·ipc·无人驾驶·域控制器·线控系统·车载计算单元