目标点注意力Transformer:一种用于端到端自动驾驶的新型轨迹预测网络

目标点注意力Transformer:一种用于端到端自动驾驶的新型轨迹预测网络

附赠自动驾驶学习资料和量产经验:链接

摘要

本文介绍了目标点注意力Transformer:一种用于端到端自动驾驶的新型轨迹预测网络。在自动驾驶领域中,已经有很多优秀的感知模型,用于目标检测、语义分割和其它任务,但是我们如何可以有效地将感知模型用于车辆规划呢?传统的自动驾驶车辆轨迹预测方法不仅需要遵循交通规则以实现避障,还需要按照规定的路线到达目的地。在本文中,我们提出了一种无规则的基于transformer的轨迹预测网络用于端到端自动驾驶,称为目标点注意力Transformer网络(TAT)。我们使用注意力机制来实现预测轨迹与感知特征以及目标点之间的交互。我们证明了,本文所提出的方法优于现有的条件模仿学习和基于GRU的方法,显著地减少了事故的发生并且提高了路线完成率。我们使用CARLA仿真器在城市中复杂的闭环驾驶场景中评估了本文方法,并且实现最先进的性能。

主要贡献

本文的贡献总结如下:

1)本文所提出的目标点注意力Transformer模型利用了注意力机制来预测自动驾驶车辆的未来轨迹,从而显著减少了事故的发生,并且提高了路线完成率;

2)本文在CARLA上进行定量实验,对不同的轨迹预测方法进行比较和分析。实验结果证明了所提出方法的有效性。

论文图片和表格

总结

在本文中,我们提出了一种用于端到端自动驾驶的新型轨迹预测网络。我们证明了,现有的基于GRU的轨迹预测网络无法充分利用可用的感知特征。为了解决这一限制,本文提出了一种新型的轨迹预测网络,其利用Transformer的注意力机制与高维感知特征直接交互,并且在CARLA上实现了最先进的性能。本文方法通用且适应性强,我们计划通过探索新的感知网络来研究进一步的改进(例如独立的交通信号灯检测网络),以缓解闯红灯的问题。

相关推荐
聆风吟º3 小时前
CANN hccl 深度解析:异构计算集群通信库的跨节点通信与资源管控实现逻辑
人工智能·wpf·transformer·cann
机器学习之心9 小时前
TCN-Transformer-BiGRU组合模型回归+SHAP分析+新数据预测+多输出!深度学习可解释分析
深度学习·回归·transformer·shap分析
Tfly__9 小时前
在PX4 gazebo仿真中加入Mid360(最新)
linux·人工智能·自动驾驶·ros·无人机·px4·mid360
是店小二呀10 小时前
CANN 异构计算的极限扩展:从算子融合到多卡通信的统一优化策略
人工智能·深度学习·transformer
ccLianLian12 小时前
计算机基础·cs336·损失函数,优化器,调度器,数据处理和模型加载保存
人工智能·深度学习·计算机视觉·transformer
肾透侧视攻城狮13 小时前
《Transformer模型PyTorch实现全攻略:架构拆解、代码示例与优化技巧》
深度学习·transformer·构建transformer模型·定义多头注意力模块·定义位置前馈网络·构建解/编码器模块·训练transformer模型
chian-ocean1 天前
量化加速实战:基于 `ops-transformer` 的 INT8 Transformer 推理
人工智能·深度学习·transformer
杜子不疼.1 天前
CANN_Transformer加速库ascend-transformer-boost的大模型推理性能优化实践
深度学习·性能优化·transformer
renhongxia11 天前
如何基于知识图谱进行故障原因、事故原因推理,需要用到哪些算法
人工智能·深度学习·算法·机器学习·自然语言处理·transformer·知识图谱
深鱼~1 天前
ops-transformer算子库:解锁昇腾大模型加速的关键
人工智能·深度学习·transformer·cann