目标点注意力Transformer:一种用于端到端自动驾驶的新型轨迹预测网络

目标点注意力Transformer:一种用于端到端自动驾驶的新型轨迹预测网络

附赠自动驾驶学习资料和量产经验:链接

摘要

本文介绍了目标点注意力Transformer:一种用于端到端自动驾驶的新型轨迹预测网络。在自动驾驶领域中,已经有很多优秀的感知模型,用于目标检测、语义分割和其它任务,但是我们如何可以有效地将感知模型用于车辆规划呢?传统的自动驾驶车辆轨迹预测方法不仅需要遵循交通规则以实现避障,还需要按照规定的路线到达目的地。在本文中,我们提出了一种无规则的基于transformer的轨迹预测网络用于端到端自动驾驶,称为目标点注意力Transformer网络(TAT)。我们使用注意力机制来实现预测轨迹与感知特征以及目标点之间的交互。我们证明了,本文所提出的方法优于现有的条件模仿学习和基于GRU的方法,显著地减少了事故的发生并且提高了路线完成率。我们使用CARLA仿真器在城市中复杂的闭环驾驶场景中评估了本文方法,并且实现最先进的性能。

主要贡献

本文的贡献总结如下:

1)本文所提出的目标点注意力Transformer模型利用了注意力机制来预测自动驾驶车辆的未来轨迹,从而显著减少了事故的发生,并且提高了路线完成率;

2)本文在CARLA上进行定量实验,对不同的轨迹预测方法进行比较和分析。实验结果证明了所提出方法的有效性。

论文图片和表格

总结

在本文中,我们提出了一种用于端到端自动驾驶的新型轨迹预测网络。我们证明了,现有的基于GRU的轨迹预测网络无法充分利用可用的感知特征。为了解决这一限制,本文提出了一种新型的轨迹预测网络,其利用Transformer的注意力机制与高维感知特征直接交互,并且在CARLA上实现了最先进的性能。本文方法通用且适应性强,我们计划通过探索新的感知网络来研究进一步的改进(例如独立的交通信号灯检测网络),以缓解闯红灯的问题。

相关推荐
云卓科技9 小时前
无人车之路径规划篇
人工智能·嵌入式硬件·算法·自动驾驶
TsingtaoAI10 小时前
2024.10|AI/大模型在机器人/自动驾驶/智能驾舱领域的最新应用和深度洞察
机器人·自动驾驶·ai大模型·具身智能·智能驾舱
小言从不摸鱼11 小时前
【NLP自然语言处理】深入解析Encoder与Decoder模块:结构、作用与深度学习应用
人工智能·深度学习·神经网络·机器学习·自然语言处理·transformer·1024程序员节
YRr YRr12 小时前
深度学习:Transformer 详解
人工智能·深度学习·transformer
Zilliz Planet14 小时前
大语言模型鼻祖Transformer的模型架构和底层原理
人工智能·深度学习·语言模型·自然语言处理·transformer
高登先生16 小时前
京津冀自动驾驶技术行业盛会|2025北京自动驾驶技术展会
大数据·人工智能·科技·机器人·自动驾驶
开MINI的工科男16 小时前
【笔记】自动驾驶预测与决策规划_Part6_不确定性感知的决策过程
人工智能·笔记·自动驾驶·预测与决策·时空联合规划
lzt232319 小时前
深度学习中的 Dropout:原理、公式与实现解析
人工智能·python·深度学习·神经网络·transformer
矩阵猫咪1 天前
【深度学习】时间序列预测、分类、异常检测、概率预测项目实战案例
人工智能·pytorch·深度学习·神经网络·机器学习·transformer·时间序列预测
地平线开发者2 天前
【征程 6 工具链性能分析与优化-1】编译器预估 perf 解读与性能分析
算法·自动驾驶