目标点注意力Transformer:一种用于端到端自动驾驶的新型轨迹预测网络

目标点注意力Transformer:一种用于端到端自动驾驶的新型轨迹预测网络

附赠自动驾驶学习资料和量产经验:链接

摘要

本文介绍了目标点注意力Transformer:一种用于端到端自动驾驶的新型轨迹预测网络。在自动驾驶领域中,已经有很多优秀的感知模型,用于目标检测、语义分割和其它任务,但是我们如何可以有效地将感知模型用于车辆规划呢?传统的自动驾驶车辆轨迹预测方法不仅需要遵循交通规则以实现避障,还需要按照规定的路线到达目的地。在本文中,我们提出了一种无规则的基于transformer的轨迹预测网络用于端到端自动驾驶,称为目标点注意力Transformer网络(TAT)。我们使用注意力机制来实现预测轨迹与感知特征以及目标点之间的交互。我们证明了,本文所提出的方法优于现有的条件模仿学习和基于GRU的方法,显著地减少了事故的发生并且提高了路线完成率。我们使用CARLA仿真器在城市中复杂的闭环驾驶场景中评估了本文方法,并且实现最先进的性能。

主要贡献

本文的贡献总结如下:

1)本文所提出的目标点注意力Transformer模型利用了注意力机制来预测自动驾驶车辆的未来轨迹,从而显著减少了事故的发生,并且提高了路线完成率;

2)本文在CARLA上进行定量实验,对不同的轨迹预测方法进行比较和分析。实验结果证明了所提出方法的有效性。

论文图片和表格

总结

在本文中,我们提出了一种用于端到端自动驾驶的新型轨迹预测网络。我们证明了,现有的基于GRU的轨迹预测网络无法充分利用可用的感知特征。为了解决这一限制,本文提出了一种新型的轨迹预测网络,其利用Transformer的注意力机制与高维感知特征直接交互,并且在CARLA上实现了最先进的性能。本文方法通用且适应性强,我们计划通过探索新的感知网络来研究进一步的改进(例如独立的交通信号灯检测网络),以缓解闯红灯的问题。

相关推荐
地平线开发者15 小时前
征程 6|工具链部署实用技巧 6:hbm 解析 API 集锦
算法·自动驾驶
地平线开发者16 小时前
开发者说|RoboTransfer:几何一致视频世界模型,突破机器人操作泛化边界
算法·自动驾驶
老鱼说AI1 天前
Transformer Masked loss原理精讲及其PyTorch逐行实现
人工智能·pytorch·python·深度学习·transformer
李加号pluuuus2 天前
【论文阅读+复现】LayoutDM: Transformer-based Diffusion Model for Layout Generation
论文阅读·深度学习·transformer
NewCarRen3 天前
用马尔可夫模型进行自动驾驶安全分析
人工智能·安全·自动驾驶
wynn11233 天前
自动驾驶中各传感器的优缺点
人工智能·机器学习·自动驾驶
古承风3 天前
相机的内外参分别指什么
自动驾驶·slam
flyyyya4 天前
【AI学习从零至壹】Transformer
人工智能·学习·transformer
m0_515790414 天前
bash方式启动模型训练
自动驾驶
Mr.Winter`5 天前
轨迹优化 | 基于边界中间值问题(BIVP)的路径平滑求解器(附C++/Python仿真)
人工智能·机器人·自动驾驶·ros·路径规划·数值优化·轨迹优化