目标检测、识别和语义分割的标注工具安装

计算机视觉

  • 图像分类(目标检测):一张图像中是否含某种物体
  • 物体定位(目标检测与目标识别):确定目标位置和所属类别。
  • 语义分割(目标分割和目标分类):对图像进行像素级分类,预测每个像素属于的类别,不区分个体;(所有的CUBE一个颜色)
  • 实例分割(目标分割和目标识别):定位图中每个物体,并进行像素级标注,区分不同个体;(CUBE都是不同颜色)

安装LabelImg

https://github.com/HumanSignal/labelImg/releases

下载后运行exe文件

为矩形标注工具,常用于目标识别和目标检测,标记输出为.xml和.txt

安装Labelme

为多边形标注工具,将轮廓标注,用于分割,标记输出格式为json

安装步骤:

conda create --name=labelme python=3.6 创建环境

conda activate labelme 激活环境

python -m pip install --upgrade pip 升级pip版本,否则安装失败

pip install pyqt5 安装pyqt

pip install labelme 安装labelme

直接输入:labelme

左侧栏目目录

打开文件、打开文件夹、下一图像、上一图像、保存、删除文件、创建多边形标注、编辑多边形、复制多边形、删除多边形、撤销、调节图像对比度

下载https://github.com/labelmeai/labelme/tree/main/examples/semantic_segmentation

semantic_segmentation文件夹

标注好的文件为json格式,将其转化为图片格式或其他格式

labelme2voc.py

类名文件、原始图像的jpeg格式、分割图像的npy格式、png格式及分割图像叠在原始图像上的jpg格式

命令

python labelme2voc.py data_annotated data_dataset_voc --labels labels.txt

将data_annotated中的标注json文件及原图像,经转换格式输出到data_dataset_voc文件夹中

查看分割的json文件命令:

复制代码
labelme_draw_json 2011_000003.json

json转png

复制代码
labelme_json_to_dataset apc2016_obj3.json -o apc2016_obj3_json

修改Labelme标签颜色

1、打标签

2、...\Anaconda3\envs\labelme\Lib\site-packages\cli

修改json_to_dataset.py

找到label_name_to_value = {"background": 0}

后面增加"类别" : 1, "类别" : 2等

3、...\Anaconda3\envs\labelme\Lib\site-packages\imgviz

修改label.py

cmap = np.stack((r, g, b), axis=1).astype(np.uint8) 下方增加

cmap[1, :] = [0,255,0] # 种类1的颜色,对应上方类别

cmap[2, :] = [255,0,0] # 种类2的颜色,可以改变指定颜色或添加更多指定种类

相关推荐
aircrushin3 小时前
三分钟说清楚 ReAct Agent 的技术实现
人工智能
技术狂人1683 小时前
工业大模型工程化部署实战!4 卡 L40S 高可用集群(动态资源调度 + 监控告警 + 国产化适配)
人工智能·算法·面试·职场和发展·vllm
好奇龙猫4 小时前
【人工智能学习-AI入试相关题目练习-第三次】
人工智能
柳杉4 小时前
建议收藏 | 2026年AI工具封神榜:从Sora到混元3D,生产力彻底爆发
前端·人工智能·后端
狮子座明仔4 小时前
Engram:DeepSeek提出条件记忆模块,“查算分离“架构开启LLM稀疏性新维度
人工智能·深度学习·语言模型·自然语言处理·架构·记忆
阿湯哥4 小时前
AgentScope Java 集成 Spring AI Alibaba Workflow 完整指南
java·人工智能·spring
Java中文社群5 小时前
保姆级喂饭教程:什么是Skills?如何用Skills?
人工智能
2301_800256115 小时前
【人工智能引论期末复习】 第6章 深度学习4 - RNN
人工智能·rnn·深度学习
商业讯网15 小时前
国家电投海外项目运营经验丰富
大数据·人工智能·区块链