机器学习—1.快速入门

机器学习步骤

  1. 确定与问题相关的输入(明确输入)
  2. 收集与问题相关的数据(数据准备,学)
  3. 分析预测结果的类型(分类?回归?是判断题还是应用题)
  4. 根据预测记过的类型,选择一个合适的算法(套路),找到输入与输出之间的关系
  5. 用这个算法去解决新的问题(习)

feature与label

自变量和因变量

feature,自变量(输入)

label,因变量(输出)

关系:label=f(feature) ,好比: 经济损失=f(地震等级)

相关推荐
梦帮科技1 分钟前
OpenClaw 桥接调用 Windows MCP:打造你的 AI 桌面自动化助手
人工智能·windows·自动化
永远都不秃头的程序员(互关)8 分钟前
CANN模型量化赋能AIGC:深度压缩,释放生成式AI的极致性能与资源潜力
人工智能·aigc
爱华晨宇11 分钟前
CANN Auto-Tune赋能AIGC:智能性能炼金术,解锁生成式AI极致效率
人工智能·aigc
聆风吟º14 分钟前
CANN算子开发:ops-nn神经网络算子库的技术解析与实战应用
人工智能·深度学习·神经网络·cann
偷吃的耗子19 分钟前
【CNN算法理解】:CNN平移不变性详解:数学原理与实例
人工智能·算法·cnn
勾股导航19 分钟前
OpenCV图像坐标系
人工智能·opencv·计算机视觉
神的泪水21 分钟前
CANN 生态实战:`msprof-performance-analyzer` 如何精准定位 AI 应用性能瓶颈
人工智能
芷栀夏21 分钟前
深度解析 CANN 异构计算架构:基于 ACL API 的算子调用实战
运维·人工智能·开源·cann
威迪斯特21 分钟前
项目解决方案:医药生产车间AI识别建设解决方案
人工智能·ai实时识别·视频实时识别·识别盒子·识别数据分析·项目解决方案
笔画人生22 分钟前
# 探索 CANN 生态:深入解析 `ops-transformer` 项目
人工智能·深度学习·transformer