神经网络的损失函数——nn.CrossEntropyLoss()

1.参数

复制代码
loss_func_none = nn.CrossEntropyLoss(reduction="none")
loss_func_mean = nn.CrossEntropyLoss(reduction="mean")
loss_func_sum = nn.CrossEntropyLoss(reduction="sum")

默认是"mean" 也就是说当loss_func_none = nn.CrossEntropyLoss()时 会输出一组batch 的损失平均值

复制代码
import torch
import torch.nn as nn
loss_func = nn.CrossEntropyLoss(reduction="none")

pre = torch.tensor([[0.8, 0.5, 0.2, 0.5],
                         [0.2, 0.9, 0.3, 0.2],
                         [0.4, 0.3, 0.7, 0.1],
                         [0.1, 0.2, 0.4, 0.8]], dtype=torch.float)
tgt_index = torch.tensor([0,1,2,3], dtype=torch.long)
print(loss_func(pre, tgt_index))

输出如下

复制代码
import torch
import torch.nn as nn
loss_func = nn.CrossEntropyLoss()

pre = torch.tensor([[0.8, 0.5, 0.2, 0.5],
                         [0.2, 0.9, 0.3, 0.2],
                         [0.4, 0.3, 0.7, 0.1],
                         [0.1, 0.2, 0.4, 0.8]], dtype=torch.float)
tgt_index = torch.tensor([0,1,2,3], dtype=torch.long)
print(loss_func(pre, tgt_index))

输出

tgt表示样本类别的真实值,有两种表示形式,一种是类别的index,另一种是one-hot形式。

复制代码
tgt_index_data = torch.tensor([0,
                               1,
                               2,
                               3], dtype=torch.long)
tgt_onehot_data = torch.tensor([[1, 0, 0, 0],
                                [0, 1, 0, 0],
                                [0, 0, 1, 0],
                                [0, 0, 0, 1]], dtype=torch.float)

损失函数|交叉熵损失函数 (zhihu.com)

2.计算过程

复制代码
loss_func = nn.CrossEntropyLoss()
pre = torch.tensor([0.8, 0.5, 0.2, 0.5], dtype=torch.float)
tgt = torch.tensor([1, 0, 0, 0], dtype=torch.float)
print("手动计算:")
print("1.softmax")
print(torch.softmax(pre, dim=-1))
print("2.取对数")
print(torch.log(torch.softmax(pre, dim=-1)))
print("3.与真实值相乘")
print(-torch.sum(torch.mul(torch.log(torch.softmax(pre, dim=-1)), tgt), dim=-1))
print()
print("调用损失函数:")
print(loss_func(pre, tgt))

交叉熵损失函数会自动对输入模型的预测值进行softmax。因此在多分类问题中,如果使用nn.CrossEntropyLoss(),则预测模型的输出层无需添加softmax层。

参考torch.nn.CrossEntropyLoss() 参数、计算过程以及及输入Tensor形状 - 知乎 (zhihu.com)

相关推荐
算家计算2 分钟前
5 秒预览物理世界,2 行代码启动生成——ComfyUI-Cosmos-Predict2 本地部署教程,重塑机器人训练范式!
人工智能·开源
摆烂工程师3 分钟前
国内如何安装和使用 Claude Code 教程 - Windows 用户篇
人工智能·ai编程·claude
云天徽上9 天前
【目标检测】图像处理基础:像素、分辨率与图像格式解析
图像处理·人工智能·目标检测·计算机视觉·数据可视化
Vertira9 天前
PyTorch中的permute, transpose, view, reshape和flatten函数详解(已解决)
人工智能·pytorch·python
heimeiyingwang9 天前
【深度学习加速探秘】Winograd 卷积算法:让计算效率 “飞” 起来
人工智能·深度学习·算法
lsd&xql9 天前
AI大模型(四)openAI应用实战
人工智能
飞哥数智坊9 天前
AI编程实战:使用Cursor,65分钟轻松打造番茄时钟应用
人工智能
匿名的魔术师9 天前
实验问题记录:PyTorch Tensor 也会出现 a = b 赋值后,修改 a 会影响 b 的情况
人工智能·pytorch·python
Ven%9 天前
PyTorch 张量(Tensors)全面指南:从基础到实战
人工智能·pytorch·python
IAM四十二9 天前
Google 端侧 AI 框架 LiteRT 初探
android·深度学习·tensorflow