神经网络的损失函数——nn.CrossEntropyLoss()

1.参数

复制代码
loss_func_none = nn.CrossEntropyLoss(reduction="none")
loss_func_mean = nn.CrossEntropyLoss(reduction="mean")
loss_func_sum = nn.CrossEntropyLoss(reduction="sum")

默认是"mean" 也就是说当loss_func_none = nn.CrossEntropyLoss()时 会输出一组batch 的损失平均值

复制代码
import torch
import torch.nn as nn
loss_func = nn.CrossEntropyLoss(reduction="none")

pre = torch.tensor([[0.8, 0.5, 0.2, 0.5],
                         [0.2, 0.9, 0.3, 0.2],
                         [0.4, 0.3, 0.7, 0.1],
                         [0.1, 0.2, 0.4, 0.8]], dtype=torch.float)
tgt_index = torch.tensor([0,1,2,3], dtype=torch.long)
print(loss_func(pre, tgt_index))

输出如下

复制代码
import torch
import torch.nn as nn
loss_func = nn.CrossEntropyLoss()

pre = torch.tensor([[0.8, 0.5, 0.2, 0.5],
                         [0.2, 0.9, 0.3, 0.2],
                         [0.4, 0.3, 0.7, 0.1],
                         [0.1, 0.2, 0.4, 0.8]], dtype=torch.float)
tgt_index = torch.tensor([0,1,2,3], dtype=torch.long)
print(loss_func(pre, tgt_index))

输出

tgt表示样本类别的真实值,有两种表示形式,一种是类别的index,另一种是one-hot形式。

复制代码
tgt_index_data = torch.tensor([0,
                               1,
                               2,
                               3], dtype=torch.long)
tgt_onehot_data = torch.tensor([[1, 0, 0, 0],
                                [0, 1, 0, 0],
                                [0, 0, 1, 0],
                                [0, 0, 0, 1]], dtype=torch.float)

损失函数|交叉熵损失函数 (zhihu.com)

2.计算过程

复制代码
loss_func = nn.CrossEntropyLoss()
pre = torch.tensor([0.8, 0.5, 0.2, 0.5], dtype=torch.float)
tgt = torch.tensor([1, 0, 0, 0], dtype=torch.float)
print("手动计算:")
print("1.softmax")
print(torch.softmax(pre, dim=-1))
print("2.取对数")
print(torch.log(torch.softmax(pre, dim=-1)))
print("3.与真实值相乘")
print(-torch.sum(torch.mul(torch.log(torch.softmax(pre, dim=-1)), tgt), dim=-1))
print()
print("调用损失函数:")
print(loss_func(pre, tgt))

交叉熵损失函数会自动对输入模型的预测值进行softmax。因此在多分类问题中,如果使用nn.CrossEntropyLoss(),则预测模型的输出层无需添加softmax层。

参考torch.nn.CrossEntropyLoss() 参数、计算过程以及及输入Tensor形状 - 知乎 (zhihu.com)

相关推荐
时序大模型5 分钟前
KDD2025 |DUET:时间 - 通道双聚类框架,多变量时序预测的 “全能选手”出现!
人工智能·机器学习·时间序列预测·时间序列·kdd2025
共绩算力29 分钟前
Ming Lite 万能模型对标 GPT-4o 的多模态能力
人工智能·共绩算力
猫先生Mr.Mao35 分钟前
2025年8月AGI月评|AI开源项目全解析:从智能体到3D世界,技术边界再突破
人工智能·开源·aigc·agi·ai资讯·分布式推理框架
深入理解GEE云计算1 小时前
遥感生态指数(RSEI):理论发展、方法论争与实践进展
javascript·人工智能·算法·机器学习
IT_陈寒1 小时前
从2秒到200ms:我是如何用JavaScript优化页面加载速度的🚀
前端·人工智能·后端
深度学习lover1 小时前
<项目代码>yolo织物缺陷识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·织物缺陷识别·项目代码
StarPrayers.1 小时前
Binary Classification& sigmoid 函数的逻辑回归&Decision Boundary
人工智能·分类·数据挖掘
渡我白衣1 小时前
C++:链接的两难 —— ODR中的强与弱符号机制
开发语言·c++·人工智能·深度学习·网络协议·算法·机器学习
大模型真好玩1 小时前
LangChain1.0速通指南(一)——LangChain1.0核心升级
人工智能·agent·mcp
私人珍藏库1 小时前
Parallels Desktop 26.1.1 for Mac 秋叶QiuChenly中文解锁直装版,最好用的macOS虚拟机
人工智能