图像处理相关知识 —— 椒盐噪声

**椒盐噪声是一种常见的图像噪声类型,它会在图像中随机地添加黑色(椒)和白色(盐)的像素点,使图像的质量降低。**这种噪声模拟了在图像传感器中可能遇到的问题,例如损坏的像素或传输过程中的干扰。

椒盐噪声会影响图像的视觉质量和信息可读性,因此在图像处理中需要采取相应的去噪方法来恢复图像的清晰度和准确性。去除椒盐噪声的常见方法包括中值滤波、均值滤波和高斯滤波等。这些方法通过在图像中的像素周围计算滤波器内像素的统计数据来平滑图像,从而减少噪声的影响。

以下是使用 Python 和 OpenCV 库生成椒盐噪声的简单示例代码:

python 复制代码
import numpy as np
import cv2

def add_salt_and_pepper_noise(image, salt_prob, pepper_prob):
    noisy_image = np.copy(image)
    row, col, _ = noisy_image.shape
    salt_pixels = np.random.rand(row, col) < salt_prob
    pepper_pixels = np.random.rand(row, col) < pepper_prob
    noisy_image[salt_pixels] = [255, 255, 255]  # 白色
    noisy_image[pepper_pixels] = [0, 0, 0]      # 黑色
    return noisy_image

# 读取图像
image = cv2.imread('example_image.jpg')

# 添加椒盐噪声
salt_prob = 0.01  # 添加盐的概率
pepper_prob = 0.01  # 添加椒的概率
noisy_image = add_salt_and_pepper_noise(image, salt_prob, pepper_prob)

# 显示原始图像和带有噪声的图像
cv2.imshow('Original Image', image)
cv2.imshow('Noisy Image', noisy_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这个示例中,我们首先使用 cv2.imread() 读取一张图像,然后定义了一个函数 add_salt_and_pepper_noise() 来添加椒盐噪声。最后,我们通过调用这个函数来生成带有椒盐噪声的图像,并使用 cv2.imshow() 显示原始图像和带有噪声的图像。

左图为原图,右图为加入椒盐噪声后的图像。

相关推荐
kovlistudio28 分钟前
机器学习第三讲:监督学习 → 带答案的学习册,如预测房价时需要历史价格数据
人工智能·机器学习
嵌入式仿真实验教学平台32 分钟前
「国产嵌入式仿真平台:高精度虚实融合如何终结Proteus时代?」——从教学实验到低空经济,揭秘新一代AI赋能的产业级教学工具
人工智能·学习·proteus·无人机·低空经济·嵌入式仿真·实验教学
正在走向自律1 小时前
Python 数据分析与可视化:开启数据洞察之旅(5/10)
开发语言·人工智能·python·数据挖掘·数据分析
LuvMyLife1 小时前
基于Win在VSCode部署运行OpenVINO模型
人工智能·深度学习·计算机视觉·openvino
fancy1661661 小时前
力扣top100 矩阵置零
人工智能·算法·矩阵
gaosushexiangji1 小时前
基于千眼狼高速摄像机与三色掩模的体三维粒子图像测速PIV技术
人工智能·数码相机·计算机视觉
六bring个六2 小时前
qtcreater配置opencv
c++·qt·opencv·计算机视觉·图形渲染·opengl
中电金信2 小时前
重构金融数智化产业版图:中电金信“链主”之道
大数据·人工智能
奋斗者1号2 小时前
Docker 部署 - Crawl4AI 文档 (v0.5.x)
人工智能·爬虫·机器学习
陈奕昆2 小时前
五、【LLaMA-Factory实战】模型部署与监控:从实验室到生产的全链路实践
开发语言·人工智能·python·llama·大模型微调