transformers in tabular tiny survey 2024.4.8

推荐阅读

TabLLM

pmlr2023,

Few-shot Classification of Tabular Data with Large Language Models

方法

使用把tabular数据序列化成文字的方法进行classification。
使用的序列化方法有几个,有人工也有AI生成。

效果

做few shot learning的效果
看上去一般。

TransTab

Learning Transferable Tabular Transformers Across Tables

方法

属于transfer learning的方法。对category、binary和numeric值进行embedding后再进行transformers最后进行classification。

使用场景

原文:

  • S(1) Transfer learning . We collect data tables from multiple cancer trials for testing the efficacy

of the same drug on different patients. These tables were designed independently with overlapping

columns. How do we learn ML models for one trial by leveraging tables from all trials?

  • S(2) Incremental learning . Additional columns might be added over time. For example, additional

features are collected across different trial phases. How do we update the ML models using tables

from all trial phases?

  • S(3) Pretraining+Finetuning . The trial outcome label (e.g., mortality) might not be always available

from all table sources. Can we benefit pretraining on those tables without labels? How do we finetune

the model on the target table with labels?

  • S(4) Zero-shot inference . We model the drug efficacy based on our trial records. The next step is to

conduct inference with the model to find patients that can benefit from the drug. However, patient

tables do not share the same columns as trial tables so direct inference is not possible.

效果

具体看原文吧,与当时的baseline比有提升。

MET

Masked Encoding for Tabular Data

tabtransformer

2020年,arxiv,TabTransformer: Tabular Data Modeling Using Contextual Embeddings

方法

transformer无监督训练,mlp监督训练。

原文

we introduce a pre-training procedure to train the Transformer layers using unlabeled data . This is followed by fine-tuning of the pre-trained Transformer layers along with the top MLP layer using the labeled data

效果

跟mlp

跟其他模型

tabnet

2020, arxiv,Google Cloud AI,Attentive Interpretable Tabular Learning, 封装的非常好,都可以当工具包使用了。

方法

跟transformer没关系的。
feature selection用的是17年的某个选择模型,最后agg一下做predict。

相关推荐
java1234_小锋4 分钟前
TensorFlow2 Python深度学习 - TensorFlow2框架入门 - 使用Keras实现逻辑回归
python·深度学习·tensorflow·tensorflow2
JJjiangfz6 分钟前
杭电 神经网络与深度学习 学习笔记
深度学习·神经网络·学习
java1234_小锋10 分钟前
TensorFlow2 Python深度学习 - TensorFlow2框架入门 - Sequential顺序模型
python·深度学习·tensorflow·tensorflow2
不惑_2 小时前
【征文计划】AI+AR生态新未来,Rokid核心技术实战解析
人工智能·机器学习
小关会打代码2 小时前
深度学习之YOLO系列了解基本知识
人工智能·深度学习·yolo
振鹏Dong4 小时前
依托 <AI 原生应用架构白皮书>,看 AI 原生应用的发展与实践
人工智能
智行众维5 小时前
自动驾驶的“虚拟驾校”如何炼成?
人工智能·自动驾驶·汽车·智能驾驶·智能网联汽车·智能驾驶仿真测试·智驾系统
空白到白6 小时前
NLP-注意力机制
人工智能·自然语言处理
大千AI助手7 小时前
指数分布:从理论到机器学习应用
人工智能·机器学习·参数估计·概率密度函数·mle·指数分布·累积分布函数
MATLAB代码顾问7 小时前
MATLAB绘制多种混沌系统
人工智能·算法·matlab