transformers in tabular tiny survey 2024.4.8

推荐阅读

TabLLM

pmlr2023,

Few-shot Classification of Tabular Data with Large Language Models

方法

使用把tabular数据序列化成文字的方法进行classification。
使用的序列化方法有几个,有人工也有AI生成。

效果

做few shot learning的效果
看上去一般。

TransTab

Learning Transferable Tabular Transformers Across Tables

方法

属于transfer learning的方法。对category、binary和numeric值进行embedding后再进行transformers最后进行classification。

使用场景

原文:

  • S(1) Transfer learning . We collect data tables from multiple cancer trials for testing the efficacy

of the same drug on different patients. These tables were designed independently with overlapping

columns. How do we learn ML models for one trial by leveraging tables from all trials?

  • S(2) Incremental learning . Additional columns might be added over time. For example, additional

features are collected across different trial phases. How do we update the ML models using tables

from all trial phases?

  • S(3) Pretraining+Finetuning . The trial outcome label (e.g., mortality) might not be always available

from all table sources. Can we benefit pretraining on those tables without labels? How do we finetune

the model on the target table with labels?

  • S(4) Zero-shot inference . We model the drug efficacy based on our trial records. The next step is to

conduct inference with the model to find patients that can benefit from the drug. However, patient

tables do not share the same columns as trial tables so direct inference is not possible.

效果

具体看原文吧,与当时的baseline比有提升。

MET

Masked Encoding for Tabular Data

tabtransformer

2020年,arxiv,TabTransformer: Tabular Data Modeling Using Contextual Embeddings

方法

transformer无监督训练,mlp监督训练。

原文

we introduce a pre-training procedure to train the Transformer layers using unlabeled data . This is followed by fine-tuning of the pre-trained Transformer layers along with the top MLP layer using the labeled data

效果

跟mlp

跟其他模型

tabnet

2020, arxiv,Google Cloud AI,Attentive Interpretable Tabular Learning, 封装的非常好,都可以当工具包使用了。

方法

跟transformer没关系的。
feature selection用的是17年的某个选择模型,最后agg一下做predict。

相关推荐
GaolBB14 分钟前
博客十二:基本框架概述(上)
人工智能
强盛小灵通专卖员17 分钟前
目标检测中F1-Score指标的详细解析:深度理解,避免误区
人工智能·目标检测·机器学习·视觉检测·rt-detr
SuperHeroWu71 小时前
【AI大模型入门指南】概念与专有名词详解 (一)
人工智能·ai·大模型·入门·概念
love530love1 小时前
【笔记】NVIDIA AI Workbench 中安装 cuDNN 9.10.2
linux·人工智能·windows·笔记·python·深度学习
no_work1 小时前
深度学习小项目合集之音频语音识别-视频介绍下自取
pytorch·深度学习·cnn·音视频·语音识别·梅卡尔
量子-Alex1 小时前
【DETR目标检测】ISTD-DETR:一种基于DETR与超分辨率技术的红外小目标检测深度学习算法
深度学习·算法·目标检测
后端小肥肠1 小时前
【效率核爆2.0】爆款短视频拆解进入流水线时代!Coze+飞书字段捷径自动生成结构化拆解报告
人工智能·aigc·coze
奇舞精选2 小时前
前端开发中AI的进阶之路:从思维重构到工程落地
前端·人工智能
创小匠2 小时前
《创始人IP打造:知识变现的高效路径》
人工智能·网络协议·tcp/ip
大模型真好玩2 小时前
GRPO 代码实战!让大模型具备思维能力,打造你的专属DeepSeek
人工智能·python·deepseek