transformers in tabular tiny survey 2024.4.8

推荐阅读

TabLLM

pmlr2023,

Few-shot Classification of Tabular Data with Large Language Models

方法

使用把tabular数据序列化成文字的方法进行classification。
使用的序列化方法有几个,有人工也有AI生成。

效果

做few shot learning的效果
看上去一般。

TransTab

Learning Transferable Tabular Transformers Across Tables

方法

属于transfer learning的方法。对category、binary和numeric值进行embedding后再进行transformers最后进行classification。

使用场景

原文:

  • S(1) Transfer learning . We collect data tables from multiple cancer trials for testing the efficacy

of the same drug on different patients. These tables were designed independently with overlapping

columns. How do we learn ML models for one trial by leveraging tables from all trials?

  • S(2) Incremental learning . Additional columns might be added over time. For example, additional

features are collected across different trial phases. How do we update the ML models using tables

from all trial phases?

  • S(3) Pretraining+Finetuning . The trial outcome label (e.g., mortality) might not be always available

from all table sources. Can we benefit pretraining on those tables without labels? How do we finetune

the model on the target table with labels?

  • S(4) Zero-shot inference . We model the drug efficacy based on our trial records. The next step is to

conduct inference with the model to find patients that can benefit from the drug. However, patient

tables do not share the same columns as trial tables so direct inference is not possible.

效果

具体看原文吧,与当时的baseline比有提升。

MET

Masked Encoding for Tabular Data

tabtransformer

2020年,arxiv,TabTransformer: Tabular Data Modeling Using Contextual Embeddings

方法

transformer无监督训练,mlp监督训练。

原文

we introduce a pre-training procedure to train the Transformer layers using unlabeled data . This is followed by fine-tuning of the pre-trained Transformer layers along with the top MLP layer using the labeled data

效果

跟mlp

跟其他模型

tabnet

2020, arxiv,Google Cloud AI,Attentive Interpretable Tabular Learning, 封装的非常好,都可以当工具包使用了。

方法

跟transformer没关系的。
feature selection用的是17年的某个选择模型,最后agg一下做predict。

相关推荐
csdn_aspnet1 分钟前
Anaconda 加速 AI 模型训练:优化机器学习工作流效率的利器
人工智能·深度学习·机器学习·anaconda
冬奇Lab3 分钟前
【Cursor进阶实战·06】MCP生态:让AI突破编辑器边界
人工智能·编辑器·ai编程
x新观点4 分钟前
2026亚马逊广告AI工具推荐:破解流量博弈困局,重构投放效率
人工智能·重构
EW Frontier5 分钟前
【DOA估计】波束成形 + 深度学习赋能!可解释高效单快拍 DOA 估计新方案 deep-MPDR【附python代码】
深度学习·doa估计
KG_LLM图谱增强大模型7 分钟前
[20页中英文PDF]生物制药企业新一代知识管理:用知识图谱+大模型构建“第二大脑“
人工智能·pdf·知识图谱
用户5191495848459 分钟前
揭秘CVE-2025-33073:Windows SMB客户端NTLM中继攻击与ADIDNS投毒利用链
人工智能·aigc
FreeCode13 分钟前
一文精通Agentic AI设计
人工智能·agent·ai编程
Blossom.11813 分钟前
强化学习推荐系统实战:从DQN到PPO的演进与落地
人工智能·python·深度学习·算法·机器学习·chatgpt·自动化
肥猪猪爸14 分钟前
Langchain实现ReAct Agent多变量工具调用
人工智能·神经网络·机器学习·自然语言处理·langchain·大模型·transformer
AI科技星16 分钟前
引力场与磁场的几何统一:磁矢势方程的第一性原理推导、验证与诠释
数据结构·人工智能·经验分享·线性代数·算法·计算机视觉·概率论