transformers in tabular tiny survey 2024.4.8

推荐阅读

TabLLM

pmlr2023,

Few-shot Classification of Tabular Data with Large Language Models

方法

使用把tabular数据序列化成文字的方法进行classification。
使用的序列化方法有几个,有人工也有AI生成。

效果

做few shot learning的效果
看上去一般。

TransTab

Learning Transferable Tabular Transformers Across Tables

方法

属于transfer learning的方法。对category、binary和numeric值进行embedding后再进行transformers最后进行classification。

使用场景

原文:

  • S(1) Transfer learning . We collect data tables from multiple cancer trials for testing the efficacy

of the same drug on different patients. These tables were designed independently with overlapping

columns. How do we learn ML models for one trial by leveraging tables from all trials?

  • S(2) Incremental learning . Additional columns might be added over time. For example, additional

features are collected across different trial phases. How do we update the ML models using tables

from all trial phases?

  • S(3) Pretraining+Finetuning . The trial outcome label (e.g., mortality) might not be always available

from all table sources. Can we benefit pretraining on those tables without labels? How do we finetune

the model on the target table with labels?

  • S(4) Zero-shot inference . We model the drug efficacy based on our trial records. The next step is to

conduct inference with the model to find patients that can benefit from the drug. However, patient

tables do not share the same columns as trial tables so direct inference is not possible.

效果

具体看原文吧,与当时的baseline比有提升。

MET

Masked Encoding for Tabular Data

tabtransformer

2020年,arxiv,TabTransformer: Tabular Data Modeling Using Contextual Embeddings

方法

transformer无监督训练,mlp监督训练。

原文

we introduce a pre-training procedure to train the Transformer layers using unlabeled data . This is followed by fine-tuning of the pre-trained Transformer layers along with the top MLP layer using the labeled data

效果

跟mlp

跟其他模型

tabnet

2020, arxiv,Google Cloud AI,Attentive Interpretable Tabular Learning, 封装的非常好,都可以当工具包使用了。

方法

跟transformer没关系的。
feature selection用的是17年的某个选择模型,最后agg一下做predict。

相关推荐
feasibility.43 分钟前
yolo11-seg在ISIC2016医疗数据集训练预测流程(含AOP调loss函数方法)
人工智能·python·yolo·计算机视觉·健康医疗·实例分割·isic2016
Elastic 中国社区官方博客1 小时前
易捷问数(NewmindExAI)平台解决 ES 升级后 AI 助手与 Attack Discovery 不正常问题
大数据·运维·数据库·人工智能·elasticsearch·搜索引擎·ai
冬奇Lab1 小时前
一天一个开源项目(第21篇):Claude-Mem - 为 Claude Code 打造的持久化记忆压缩系统
人工智能·开源·claude
大任视点1 小时前
星云天启发布革命性AI智慧家居体系:开启未来家居新纪元
人工智能
jarvisuni1 小时前
GLM5带10个题目挑战Claude4.6编程宝座 !
人工智能·ai编程
YunchengLi1 小时前
【计算机图形学中的四元数】2/2 Quaternions for Computer Graphics
人工智能·算法·机器学习
开开心心就好1 小时前
一键加密隐藏视频,专属格式播放工具
java·linux·开发语言·网络·人工智能·macos
呆萌很2 小时前
BGR和RGB区别
人工智能
L念安dd2 小时前
基于 PyTorch 的轻量推荐系统框架
人工智能·pytorch·python