transformers in tabular tiny survey 2024.4.8

推荐阅读

TabLLM

pmlr2023,

Few-shot Classification of Tabular Data with Large Language Models

方法

使用把tabular数据序列化成文字的方法进行classification。
使用的序列化方法有几个,有人工也有AI生成。

效果

做few shot learning的效果
看上去一般。

TransTab

Learning Transferable Tabular Transformers Across Tables

方法

属于transfer learning的方法。对category、binary和numeric值进行embedding后再进行transformers最后进行classification。

使用场景

原文:

  • S(1) Transfer learning . We collect data tables from multiple cancer trials for testing the efficacy

of the same drug on different patients. These tables were designed independently with overlapping

columns. How do we learn ML models for one trial by leveraging tables from all trials?

  • S(2) Incremental learning . Additional columns might be added over time. For example, additional

features are collected across different trial phases. How do we update the ML models using tables

from all trial phases?

  • S(3) Pretraining+Finetuning . The trial outcome label (e.g., mortality) might not be always available

from all table sources. Can we benefit pretraining on those tables without labels? How do we finetune

the model on the target table with labels?

  • S(4) Zero-shot inference . We model the drug efficacy based on our trial records. The next step is to

conduct inference with the model to find patients that can benefit from the drug. However, patient

tables do not share the same columns as trial tables so direct inference is not possible.

效果

具体看原文吧,与当时的baseline比有提升。

MET

Masked Encoding for Tabular Data

tabtransformer

2020年,arxiv,TabTransformer: Tabular Data Modeling Using Contextual Embeddings

方法

transformer无监督训练,mlp监督训练。

原文

we introduce a pre-training procedure to train the Transformer layers using unlabeled data . This is followed by fine-tuning of the pre-trained Transformer layers along with the top MLP layer using the labeled data

效果

跟mlp

跟其他模型

tabnet

2020, arxiv,Google Cloud AI,Attentive Interpretable Tabular Learning, 封装的非常好,都可以当工具包使用了。

方法

跟transformer没关系的。
feature selection用的是17年的某个选择模型,最后agg一下做predict。

相关推荐
PPIO派欧云29 分钟前
PPIO上新GPU实例模板,一键部署PaddleOCR-VL
人工智能
TGITCIC2 小时前
金融RAG落地之痛:不在模型,而在数据结构
人工智能·ai大模型·ai agent·ai智能体·开源大模型·金融ai·金融rag
chenzhiyuan20185 小时前
《十五五规划》下的AI边缘计算机遇:算力下沉与工业智能化
人工智能·边缘计算
whaosoft-1435 小时前
51c深度学习~合集11
人工智能
Tiandaren6 小时前
大模型应用03 || 函数调用 Function Calling || 概念、思想、流程
人工智能·算法·microsoft·数据分析
领航猿1号6 小时前
Pytorch 内存布局优化:Contiguous Memory
人工智能·pytorch·深度学习·机器学习
综合热讯6 小时前
宠智灵宠物识别AI:从犬猫到鸟鱼的全生态智能识别
人工智能·宠物
zskj_zhyl7 小时前
智慧康养新篇章:七彩喜如何重塑老年生活的温度与尊严
大数据·人工智能·科技·物联网·生活
化作星辰7 小时前
使用房屋价格预测的场景,展示如何从多个影响因素计算权重和偏置的梯度
pytorch·深度学习
永霖光电_UVLED7 小时前
IVWorks率先将8英寸GaN纳米线片商业化
人工智能·神经网络·生成对抗网络