transformers in tabular tiny survey 2024.4.8

推荐阅读

TabLLM

pmlr2023,

Few-shot Classification of Tabular Data with Large Language Models

方法

使用把tabular数据序列化成文字的方法进行classification。
使用的序列化方法有几个,有人工也有AI生成。

效果

做few shot learning的效果
看上去一般。

TransTab

Learning Transferable Tabular Transformers Across Tables

方法

属于transfer learning的方法。对category、binary和numeric值进行embedding后再进行transformers最后进行classification。

使用场景

原文:

  • S(1) Transfer learning . We collect data tables from multiple cancer trials for testing the efficacy

of the same drug on different patients. These tables were designed independently with overlapping

columns. How do we learn ML models for one trial by leveraging tables from all trials?

  • S(2) Incremental learning . Additional columns might be added over time. For example, additional

features are collected across different trial phases. How do we update the ML models using tables

from all trial phases?

  • S(3) Pretraining+Finetuning . The trial outcome label (e.g., mortality) might not be always available

from all table sources. Can we benefit pretraining on those tables without labels? How do we finetune

the model on the target table with labels?

  • S(4) Zero-shot inference . We model the drug efficacy based on our trial records. The next step is to

conduct inference with the model to find patients that can benefit from the drug. However, patient

tables do not share the same columns as trial tables so direct inference is not possible.

效果

具体看原文吧,与当时的baseline比有提升。

MET

Masked Encoding for Tabular Data

tabtransformer

2020年,arxiv,TabTransformer: Tabular Data Modeling Using Contextual Embeddings

方法

transformer无监督训练,mlp监督训练。

原文

we introduce a pre-training procedure to train the Transformer layers using unlabeled data . This is followed by fine-tuning of the pre-trained Transformer layers along with the top MLP layer using the labeled data

效果

跟mlp

跟其他模型

tabnet

2020, arxiv,Google Cloud AI,Attentive Interpretable Tabular Learning, 封装的非常好,都可以当工具包使用了。

方法

跟transformer没关系的。
feature selection用的是17年的某个选择模型,最后agg一下做predict。

相关推荐
人邮异步社区11 分钟前
PRML为何是机器学习的经典书籍中的经典?
人工智能·机器学习
paceboy22 分钟前
Claude和Cursor之间的切换
人工智能·程序人生
GISer_Jing28 分钟前
AI营销增长:4大核心能力+前端落地指南
前端·javascript·人工智能
驴友花雕29 分钟前
【花雕动手做】CanMV K230 AI视觉识别模块之使用CanMV IDE调试运行人脸代码
ide·人工智能·单片机·嵌入式硬件·canmv k230 ai视觉·canmv ide 人脸代码
猫头虎29 分钟前
又又又双叒叕一款AI IDE发布,国内第五款国产AI IDE Qoder来了
ide·人工智能·langchain·prompt·aigc·intellij-idea·ai编程
weixin_3875456430 分钟前
Antigravity 上手指南:打造 VS Code 风格的 AI IDE
ide·人工智能
程序届的伪精英30 分钟前
IDE TRAE介绍与使用
ide·人工智能
资深程序员 哈克(21年开发经验)31 分钟前
2025 年 AI编程软件 IDE 的深入对比与推荐排行:从好用到生成效果的转变
人工智能·ai编程
奇树谦32 分钟前
2025 嵌入式 AI IDE 全面对比:Trae、Copilot、Windsurf、Cursor 谁最值得个人开发者入手?
ide·人工智能·copilot
深度学习实战训练营38 分钟前
U-Net++:嵌套密集跳跃连接,多尺度融合增强特征表达,医学影像分割的unet创新-k学长深度学习专栏
人工智能·深度学习