【R基础】一组数据计算均值、方差与标准差方法及意义

【R基础】一组数据计算均值、方差与标准差方法及意义

均值、方差与标准差是用来描述数据分布情况

均值:用来衡量一组数据整体情况。

数据离散程度度量标准:

方差(均方,s^2,总体参数,离均差平方和):衡量数据集内样本间分散程度。单位是平方,没具体意义,故使用标准差。

总体方差

s2=[(x1-x)2 +...(xn-x)^2]/n

标准差(又称:均方差):是方差的算术平方根,单位与总体一致。

s=sqrt(s^2)

描述数据的离散程度,反映数据与其均值间的偏离程度,绝对值越大,数据越分散,数据间差异性越大,代表大部分数值和其平均值之间差异较大。较小的标准差,代表这些数值较接近平均值,数据集中。

平均数相同的两组数据,标准差未必相同。

变异系数CV=标准差/均值 *100%

平均值+标准差:

假设一组数据完全符合状态分布,那么这个数据集中 均值± 标准差可以快速了解数据集的整体变动情况。样本值落入-σ 到+σ即±σ区间的概率为68.3%;落入±2σ和±3σ区间的概率分别为95.4%和99.7%

标准误: 也称标准误差,,是描述对应的样本统计量抽样分布的离散程度及衡量对应样本统计量抽样误差大小的尺度。样本容量越大,标准误越小,那么抽样误差就越小,就表明所抽取的样本能够较好地代表总体。



R语言实操

javascript 复制代码
> # 创建一个样本数据
> data <- c(1:15)
> # 均值
> m<-mean(data)
> #计算标准差SD
> s<-sd(data)
> # 样本容量
> n<-length(data)
> #计算标准误
> se<-s/sqrt(n)
> m
[1] 8
> s
[1] 4.472136
> n
[1] 15
> se
[1] 1.154701
m
[1] 8
> s
[1] 4.472136
> n
[1] 15
> se
[1] 1.154701
相关推荐
寻星探路7 小时前
【深度长文】万字攻克网络原理:从 HTTP 报文解构到 HTTPS 终极加密逻辑
java·开发语言·网络·python·http·ai·https
lly2024069 小时前
Bootstrap 警告框
开发语言
2601_949146539 小时前
C语言语音通知接口接入教程:如何使用C语言直接调用语音预警API
c语言·开发语言
曹牧9 小时前
Spring Boot:如何测试Java Controller中的POST请求?
java·开发语言
KYGALYX9 小时前
服务异步通信
开发语言·后端·微服务·ruby
zmzb01039 小时前
C++课后习题训练记录Day98
开发语言·c++
猫头虎10 小时前
如何排查并解决项目启动时报错Error encountered while processing: java.io.IOException: closed 的问题
java·开发语言·jvm·spring boot·python·开源·maven
YUJIANYUE11 小时前
PHP纹路验证码
开发语言·php
仟濹11 小时前
【Java基础】多态 | 打卡day2
java·开发语言
孞㐑¥11 小时前
算法——BFS
开发语言·c++·经验分享·笔记·算法