【R基础】一组数据计算均值、方差与标准差方法及意义

【R基础】一组数据计算均值、方差与标准差方法及意义

均值、方差与标准差是用来描述数据分布情况

均值:用来衡量一组数据整体情况。

数据离散程度度量标准:

方差(均方,s^2,总体参数,离均差平方和):衡量数据集内样本间分散程度。单位是平方,没具体意义,故使用标准差。

总体方差

s2=[(x1-x)2 +...(xn-x)^2]/n

标准差(又称:均方差):是方差的算术平方根,单位与总体一致。

s=sqrt(s^2)

描述数据的离散程度,反映数据与其均值间的偏离程度,绝对值越大,数据越分散,数据间差异性越大,代表大部分数值和其平均值之间差异较大。较小的标准差,代表这些数值较接近平均值,数据集中。

平均数相同的两组数据,标准差未必相同。

变异系数CV=标准差/均值 *100%

平均值+标准差:

假设一组数据完全符合状态分布,那么这个数据集中 均值± 标准差可以快速了解数据集的整体变动情况。样本值落入-σ 到+σ即±σ区间的概率为68.3%;落入±2σ和±3σ区间的概率分别为95.4%和99.7%

标准误: 也称标准误差,,是描述对应的样本统计量抽样分布的离散程度及衡量对应样本统计量抽样误差大小的尺度。样本容量越大,标准误越小,那么抽样误差就越小,就表明所抽取的样本能够较好地代表总体。



R语言实操

javascript 复制代码
> # 创建一个样本数据
> data <- c(1:15)
> # 均值
> m<-mean(data)
> #计算标准差SD
> s<-sd(data)
> # 样本容量
> n<-length(data)
> #计算标准误
> se<-s/sqrt(n)
> m
[1] 8
> s
[1] 4.472136
> n
[1] 15
> se
[1] 1.154701
m
[1] 8
> s
[1] 4.472136
> n
[1] 15
> se
[1] 1.154701
相关推荐
侃侃_天下12 小时前
最终的信号类
开发语言·c++·算法
echoarts13 小时前
Rayon Rust中的数据并行库入门教程
开发语言·其他·算法·rust
Aomnitrix13 小时前
知识管理新范式——cpolar+Wiki.js打造企业级分布式知识库
开发语言·javascript·分布式
每天回答3个问题14 小时前
UE5C++编译遇到MSB3073
开发语言·c++·ue5
伍哥的传说14 小时前
Vite Plugin PWA – 零配置构建现代渐进式Web应用
开发语言·前端·javascript·web app·pwa·service worker·workbox
小莞尔14 小时前
【51单片机】【protues仿真】 基于51单片机八路抢答器系统
c语言·开发语言·单片机·嵌入式硬件·51单片机
我是菜鸟0713号15 小时前
Qt 中 OPC UA 通讯实战
开发语言·qt
JCBP_15 小时前
QT(4)
开发语言·汇编·c++·qt·算法
Brookty15 小时前
【JavaEE】线程安全-内存可见性、指令全排序
java·开发语言·后端·java-ee·线程安全·内存可见性·指令重排序
百锦再15 小时前
[特殊字符] Python在CentOS系统执行深度指南
开发语言·python·plotly·django·centos·virtualenv·pygame