pytorch3d、Detectron2编译安装

基础环境:

python:3.6

ubuntu:18.04

pytorch:1.8

cuda:10.2

一、pytorch3d编译

官方指南 GitCode - 开发者的代码家园

注意:cuda11以下的版本,需要安装CUB libaray,cuda11以上的版本跳过此步骤。

复制代码
conda install -c bottler nvidiacub

或通过源码方式安装:

复制代码
curl -LO https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz
tar xzf 1.10.0.tar.gz

配置CUB_HOME环境变量:

复制代码
vim ~/.bashrc
# 注意将/home/bdlf/cub-1.10.0替换为对应的CUB包路径
export CUB_HOME=/home/bdlf/cub-1.10.0
# 更新一下
source ~/.bashrc

1、安装依赖:

复制代码
conda install -c fvcore -c iopath -c conda-forge fvcore iopath

2、pytorch3d源码下载

根据自己环境,选择对应版本pytorch3d,这里选择V0.5.0。

3、编译

复制代码
cd pytorch3d
pip install -e .

第一次在python3.8虚拟环境中采用上述方式顺利通过编译,但第二次更换python3.6环境后,一直编译失败,很是无语,望知道的小伙伴可以解答一下~~

参考链接 Pytorch3D Linux环境下安装(踩坑)记录_pytorch_帕斯卡多-华为云开发者联盟

二、Detectron2编译

参考链接 Github 项目 - detectron2 安装与简单使用 - AI备忘录

Detectron2下载地址 https://download.csdn.net/download/WXG1011/89076387

我的GCC为7.5.0,但python为3.6,采用python -m pip install -e .安装提示ERROR: Package 'detectron2' requires a different Python: 3.6.7 not in '>=3.7',故采用python setup.py build develop,在编译过程中会出现包缺失或版本冲突的问题,直接pip安装丢失的包,再重新编译,重新编译时需删除Detectron2文件夹下的build文件。

编译成功提示:

复制代码
Using /home/bdlf/.local/lib/python3.6/site-packages
Finished processing dependencies for detectron2==0.6

测试:

复制代码
(py36) bdlf@bdlf-desktop:~/detectron2$ python
Python 3.6.7 | packaged by conda-forge | (default, Jan  7 2019, 02:49:06)
[GCC 7.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import detectron2
>>>

API文档 Installation --- detectron2 0.6 documentation

相关推荐
骥龙18 分钟前
XX汽集团数字化转型:全生命周期网络安全、数据合规与AI工业物联网融合实践
人工智能·物联网·web安全
zskj_qcxjqr24 分钟前
告别传统繁琐!七彩喜艾灸机器人:一键开启智能养生新时代
大数据·人工智能·科技·机器人
Ven%27 分钟前
第一章 神经网络的复习
人工智能·深度学习·神经网络
爬虫程序猿27 分钟前
《京东商品详情爬取实战指南》
爬虫·python
胡耀超30 分钟前
4、Python面向对象编程与模块化设计
开发语言·python·ai·大模型·conda·anaconda
研梦非凡1 小时前
CVPR 2025|基于视觉语言模型的零样本3D视觉定位
人工智能·深度学习·计算机视觉·3d·ai·语言模型·自然语言处理
Monkey的自我迭代1 小时前
多目标轮廓匹配
人工智能·opencv·计算机视觉
每日新鲜事1 小时前
Saucony索康尼推出全新 WOOOLLY 运动生活羊毛系列 生动无理由,从专业跑步延展运动生活的每一刻
大数据·人工智能
空白到白1 小时前
机器学习-聚类
人工智能·算法·机器学习·聚类
中新赛克1 小时前
双引擎驱动!中新赛克AI安全方案入选网安创新大赛优胜榜单
人工智能·安全