pytorch3d、Detectron2编译安装

基础环境:

python:3.6

ubuntu:18.04

pytorch:1.8

cuda:10.2

一、pytorch3d编译

官方指南 GitCode - 开发者的代码家园

注意:cuda11以下的版本,需要安装CUB libaray,cuda11以上的版本跳过此步骤。

复制代码
conda install -c bottler nvidiacub

或通过源码方式安装:

复制代码
curl -LO https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz
tar xzf 1.10.0.tar.gz

配置CUB_HOME环境变量:

复制代码
vim ~/.bashrc
# 注意将/home/bdlf/cub-1.10.0替换为对应的CUB包路径
export CUB_HOME=/home/bdlf/cub-1.10.0
# 更新一下
source ~/.bashrc

1、安装依赖:

复制代码
conda install -c fvcore -c iopath -c conda-forge fvcore iopath

2、pytorch3d源码下载

根据自己环境,选择对应版本pytorch3d,这里选择V0.5.0。

3、编译

复制代码
cd pytorch3d
pip install -e .

第一次在python3.8虚拟环境中采用上述方式顺利通过编译,但第二次更换python3.6环境后,一直编译失败,很是无语,望知道的小伙伴可以解答一下~~

参考链接 Pytorch3D Linux环境下安装(踩坑)记录_pytorch_帕斯卡多-华为云开发者联盟

二、Detectron2编译

参考链接 Github 项目 - detectron2 安装与简单使用 - AI备忘录

Detectron2下载地址 https://download.csdn.net/download/WXG1011/89076387

我的GCC为7.5.0,但python为3.6,采用python -m pip install -e .安装提示ERROR: Package 'detectron2' requires a different Python: 3.6.7 not in '>=3.7',故采用python setup.py build develop,在编译过程中会出现包缺失或版本冲突的问题,直接pip安装丢失的包,再重新编译,重新编译时需删除Detectron2文件夹下的build文件。

编译成功提示:

复制代码
Using /home/bdlf/.local/lib/python3.6/site-packages
Finished processing dependencies for detectron2==0.6

测试:

复制代码
(py36) bdlf@bdlf-desktop:~/detectron2$ python
Python 3.6.7 | packaged by conda-forge | (default, Jan  7 2019, 02:49:06)
[GCC 7.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import detectron2
>>>

API文档 Installation --- detectron2 0.6 documentation

相关推荐
独处东汉几秒前
freertos开发空气检测仪之按键输入事件管理系统设计与实现
人工智能·stm32·单片机·嵌入式硬件·unity
你大爷的,这都没注册了几秒前
AI提示词,zero-shot,few-shot 概念
人工智能
AC赳赳老秦2 分钟前
DeepSeek 辅助科研项目申报:可行性报告与经费预算框架的智能化撰写指南
数据库·人工智能·科技·mongodb·ui·rabbitmq·deepseek
瑞华丽PLM10 分钟前
国产PLM软件源头厂家的AI技术应用与智能化升级
人工智能·plm·国产plm·瑞华丽plm·瑞华丽
koo36415 分钟前
pytorch深度学习笔记19
pytorch·笔记·深度学习
xixixi7777719 分钟前
基于零信任架构的通信
大数据·人工智能·架构·零信任·通信·个人隐私
2501_9071368220 分钟前
基于Python+QT6的移动硬盘弹出工具
python·软件需求
玄同76521 分钟前
LangChain v1.0+ Prompt 模板完全指南:构建精准可控的大模型交互
人工智能·语言模型·自然语言处理·langchain·nlp·交互·知识图谱
Ryan老房26 分钟前
开源vs商业-数据标注工具的选择困境
人工智能·yolo·目标检测·计算机视觉·ai
取个鸣字真的难31 分钟前
Obsidian + CC:用AI 打造知识管理系统
人工智能·产品运营