pytorch3d、Detectron2编译安装

基础环境:

python:3.6

ubuntu:18.04

pytorch:1.8

cuda:10.2

一、pytorch3d编译

官方指南 GitCode - 开发者的代码家园

注意:cuda11以下的版本,需要安装CUB libaray,cuda11以上的版本跳过此步骤。

复制代码
conda install -c bottler nvidiacub

或通过源码方式安装:

复制代码
curl -LO https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz
tar xzf 1.10.0.tar.gz

配置CUB_HOME环境变量:

复制代码
vim ~/.bashrc
# 注意将/home/bdlf/cub-1.10.0替换为对应的CUB包路径
export CUB_HOME=/home/bdlf/cub-1.10.0
# 更新一下
source ~/.bashrc

1、安装依赖:

复制代码
conda install -c fvcore -c iopath -c conda-forge fvcore iopath

2、pytorch3d源码下载

根据自己环境,选择对应版本pytorch3d,这里选择V0.5.0。

3、编译

复制代码
cd pytorch3d
pip install -e .

第一次在python3.8虚拟环境中采用上述方式顺利通过编译,但第二次更换python3.6环境后,一直编译失败,很是无语,望知道的小伙伴可以解答一下~~

参考链接 Pytorch3D Linux环境下安装(踩坑)记录_pytorch_帕斯卡多-华为云开发者联盟

二、Detectron2编译

参考链接 Github 项目 - detectron2 安装与简单使用 - AI备忘录

Detectron2下载地址 https://download.csdn.net/download/WXG1011/89076387

我的GCC为7.5.0,但python为3.6,采用python -m pip install -e .安装提示ERROR: Package 'detectron2' requires a different Python: 3.6.7 not in '>=3.7',故采用python setup.py build develop,在编译过程中会出现包缺失或版本冲突的问题,直接pip安装丢失的包,再重新编译,重新编译时需删除Detectron2文件夹下的build文件。

编译成功提示:

复制代码
Using /home/bdlf/.local/lib/python3.6/site-packages
Finished processing dependencies for detectron2==0.6

测试:

复制代码
(py36) bdlf@bdlf-desktop:~/detectron2$ python
Python 3.6.7 | packaged by conda-forge | (default, Jan  7 2019, 02:49:06)
[GCC 7.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import detectron2
>>>

API文档 Installation --- detectron2 0.6 documentation

相关推荐
EasyCVR几秒前
视频汇聚平台EasyCVR如何为活动安保打造“智慧天眼”系统?
人工智能·音视频
数字冰雹几秒前
从“可视”到“可智”——“人工智能+”行动下,数字孪生与 AI 的战略交汇机遇
人工智能
大厂技术总监下海1 分钟前
可视化编排 + AI Copilot + 私有知识库:Sim如何打造下一代AI智能体开发平台?
人工智能·开源·copilot
逸俊晨晖5 分钟前
昇腾310P算力卡 10路1080p实时YOLOv8目标检测
人工智能·yolo·目标检测·昇腾
sunywz7 分钟前
【JVM】(2)java类加载机制
java·jvm·python
电商API_180079052479 分钟前
B站视频列表与详情数据API调用完全指南
大数据·人工智能·爬虫·数据分析
Silence_Jy10 分钟前
GPU架构
python
kwg12615 分钟前
本地搭建 OPC UA MCP 服务
python·agent·mcp
belldeep16 分钟前
python:mnist 数据集下载,parse
python·numpy·mnist
jxm_csdn19 分钟前
递归工程工厂:Claude Code + Git Worktrees + Tilix/Tmux 的“AI分身”编码团队
人工智能·git