KNN课堂(分类课堂(可用kd树/特征归一化提高精度)))

实验代码:

导入所需要的库

import numpy as np

import pandas as pd

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

导入数据集

df = pd.read_csv('C:\\Users\\Administrator\\Desktop\\iris.csv')

提取特征和标签

X = df.iloc[:, 0:4].values

y = df.iloc[:, 4].values

将数据集分为训练集和测试集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

建立 KNN 模型

"""

  1. n_neighbors:整数值,表示要考虑的最近邻的数量。

  2. weights:可以是'uniform'或者是'distance',表示在计算最近邻的距离时考虑的权重,'uniform'表示所有最近邻的距离权重都一样,而'distance'表示距离越近的最近邻权重越大。

  3. algorithm:可以是'ball_tree'、'kd_tree'或者'brute',表示使用何种算法来计算最近邻的距离。

  4. leaf_size:整数值,表示在构建 ball_tree 或者 kd_tree 时考虑的叶节点的尺寸。

  5. metric:字符串值,表示使用何种度量来计算最近邻的距离,常用的有'euclidean'(欧几里得距离)和'minkowski'(闵可夫斯基距离)。

"""

knn = KNeighborsClassifier(n_neighbors=5)

knn.fit(X, y)

训练模型

knn.fit(X_train, y_train)

预测测试集结果

y_pred = knn.predict(X_test)

计算准确率

accuracy = knn.score(X_test, y_test)

打印准确率

print("Accuracy: {}".format(accuracy))

实验结果:

数据集:

见所提供资料

相关推荐
wshzd4 分钟前
LLM之RAG实战(五十一)| 使用python和Cypher解析PDF数据,并加载到Neo4j数据库
数据库·python·pdf
CodeJourney.6 分钟前
开源人工智能模型框架:探索与实践
人工智能·能源
好评笔记16 分钟前
多模态论文笔记——U-ViT(国内版DiT)
论文阅读·人工智能·深度学习·计算机视觉·aigc·transformer·u-vit
小西blue26 分钟前
prompt提示词技巧
人工智能·prompt·提示词技巧·prompt技巧
兔飞飞呀1 小时前
常见转义字符
开发语言·前端·python
爱学习的uu1 小时前
KAGGLE竞赛实战2-捷信金融违约预测竞赛-part1-数据探索及baseline建立
人工智能·python·决策树·机器学习·金融·数据挖掘·逻辑回归
Chatopera 研发团队1 小时前
Launch Linux( ubuntu14.04) GPU Acc machine in AWS
linux·人工智能·gpu算力·aws
盼小辉丶1 小时前
TensorFlow深度学习实战(4)——正则化技术详解
人工智能·深度学习·tensorflow
杨超越luckly1 小时前
Python应用指南:高德交通态势数据
python·arcgis·数据挖掘·数据分析·交通态势
c的s1 小时前
朴素贝叶斯方法
python·算法·机器学习