KNN课堂(分类课堂(可用kd树/特征归一化提高精度)))

实验代码:

导入所需要的库

import numpy as np

import pandas as pd

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

导入数据集

df = pd.read_csv('C:\\Users\\Administrator\\Desktop\\iris.csv')

提取特征和标签

X = df.iloc[:, 0:4].values

y = df.iloc[:, 4].values

将数据集分为训练集和测试集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

建立 KNN 模型

"""

  1. n_neighbors:整数值,表示要考虑的最近邻的数量。

  2. weights:可以是'uniform'或者是'distance',表示在计算最近邻的距离时考虑的权重,'uniform'表示所有最近邻的距离权重都一样,而'distance'表示距离越近的最近邻权重越大。

  3. algorithm:可以是'ball_tree'、'kd_tree'或者'brute',表示使用何种算法来计算最近邻的距离。

  4. leaf_size:整数值,表示在构建 ball_tree 或者 kd_tree 时考虑的叶节点的尺寸。

  5. metric:字符串值,表示使用何种度量来计算最近邻的距离,常用的有'euclidean'(欧几里得距离)和'minkowski'(闵可夫斯基距离)。

"""

knn = KNeighborsClassifier(n_neighbors=5)

knn.fit(X, y)

训练模型

knn.fit(X_train, y_train)

预测测试集结果

y_pred = knn.predict(X_test)

计算准确率

accuracy = knn.score(X_test, y_test)

打印准确率

print("Accuracy: {}".format(accuracy))

实验结果:

数据集:

见所提供资料

相关推荐
‿hhh1 小时前
微服务智慧交通管理平台 - 项目实现(结合Qoder搭建)
java·人工智能·机器学习·微服务·架构·需求分析·规格说明书
ysdysyn1 小时前
AI:制造的“智慧预言家”——预测未来、优化现在的智能大脑*
人工智能·程序人生·ai·数据分析·制造
ggabb1 小时前
航空发动机:材料与精密制造的百年突围——从GE双王牌看工业皇冠上的明珠如何炼成
人工智能
Eiceblue1 小时前
将 Python 列表导出为 Excel 文件:一维、二维、字典列表
开发语言·python·excel·visual studio code
喝拿铁写前端7 小时前
别再让 AI 直接写页面了:一种更稳的中后台开发方式
前端·人工智能
Swizard8 小时前
别再让你的 Python 傻等了:三分钟带你通过 asyncio 实现性能起飞
python
tongxianchao8 小时前
UPDP: A Unified Progressive Depth Pruner for CNN and Vision Transformer
人工智能·cnn·transformer
塔能物联运维8 小时前
设备边缘计算任务调度卡顿 后来动态分配CPU/GPU资源
人工智能·边缘计算
过期的秋刀鱼!9 小时前
人工智能-深度学习-线性回归
人工智能·深度学习
木头左9 小时前
高级LSTM架构在量化交易中的特殊入参要求与实现
人工智能·rnn·lstm