KNN课堂(分类课堂(可用kd树/特征归一化提高精度)))

实验代码:

导入所需要的库

import numpy as np

import pandas as pd

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

导入数据集

df = pd.read_csv('C:\\Users\\Administrator\\Desktop\\iris.csv')

提取特征和标签

X = df.iloc[:, 0:4].values

y = df.iloc[:, 4].values

将数据集分为训练集和测试集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

建立 KNN 模型

"""

  1. n_neighbors:整数值,表示要考虑的最近邻的数量。

  2. weights:可以是'uniform'或者是'distance',表示在计算最近邻的距离时考虑的权重,'uniform'表示所有最近邻的距离权重都一样,而'distance'表示距离越近的最近邻权重越大。

  3. algorithm:可以是'ball_tree'、'kd_tree'或者'brute',表示使用何种算法来计算最近邻的距离。

  4. leaf_size:整数值,表示在构建 ball_tree 或者 kd_tree 时考虑的叶节点的尺寸。

  5. metric:字符串值,表示使用何种度量来计算最近邻的距离,常用的有'euclidean'(欧几里得距离)和'minkowski'(闵可夫斯基距离)。

"""

knn = KNeighborsClassifier(n_neighbors=5)

knn.fit(X, y)

训练模型

knn.fit(X_train, y_train)

预测测试集结果

y_pred = knn.predict(X_test)

计算准确率

accuracy = knn.score(X_test, y_test)

打印准确率

print("Accuracy: {}".format(accuracy))

实验结果:

数据集:

见所提供资料

相关推荐
一招定胜负几秒前
矿物分类系统设计
人工智能·分类·数据挖掘
大模型最新论文速读1 分钟前
「图文讲解」Profit:用概率挑选重要 token 解决 SFT 过拟合问题
论文阅读·人工智能·深度学习·机器学习·自然语言处理
亿丢丢4 分钟前
DeepSeek本地部署:Ollama+Open WebUI
人工智能·windows·deepseek
Sagittarius_A*6 分钟前
单 / 多目标模板匹配:相似度度量与阈值优化【计算机视觉】
人工智能·计算机视觉
Coder_Boy_7 分钟前
基于SpringAI的在线考试系统-核心模块的数据模型交互关系
java·数据库·人工智能·spring boot·交互
CCC:CarCrazeCurator9 分钟前
汽车UDS诊断深度剖析:定义、原理、应用与未来趋势
人工智能·汽车
FL162386312911 分钟前
C# winform部署yolo26-seg实例分割的onnx模型演示源码+模型+说明
人工智能·深度学习
Ulyanov15 分钟前
PyVista与Tkinter桌面级3D可视化应用实战
开发语言·前端·python·3d·信息可视化·tkinter·gui开发
沛沛老爹19 分钟前
从Web到AI:Agent Skills CI/CD流水线集成实战指南
java·前端·人工智能·ci/cd·架构·llama·rag
byte轻骑兵20 分钟前
【LE Audio】BAP协议精讲[1]: 开启低功耗音频新纪元
人工智能·音视频·蓝牙·le audio·bap