KNN课堂(分类课堂(可用kd树/特征归一化提高精度)))

实验代码:

导入所需要的库

import numpy as np

import pandas as pd

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

导入数据集

df = pd.read_csv('C:\\Users\\Administrator\\Desktop\\iris.csv')

提取特征和标签

X = df.iloc[:, 0:4].values

y = df.iloc[:, 4].values

将数据集分为训练集和测试集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

建立 KNN 模型

"""

  1. n_neighbors:整数值,表示要考虑的最近邻的数量。

  2. weights:可以是'uniform'或者是'distance',表示在计算最近邻的距离时考虑的权重,'uniform'表示所有最近邻的距离权重都一样,而'distance'表示距离越近的最近邻权重越大。

  3. algorithm:可以是'ball_tree'、'kd_tree'或者'brute',表示使用何种算法来计算最近邻的距离。

  4. leaf_size:整数值,表示在构建 ball_tree 或者 kd_tree 时考虑的叶节点的尺寸。

  5. metric:字符串值,表示使用何种度量来计算最近邻的距离,常用的有'euclidean'(欧几里得距离)和'minkowski'(闵可夫斯基距离)。

"""

knn = KNeighborsClassifier(n_neighbors=5)

knn.fit(X, y)

训练模型

knn.fit(X_train, y_train)

预测测试集结果

y_pred = knn.predict(X_test)

计算准确率

accuracy = knn.score(X_test, y_test)

打印准确率

print("Accuracy: {}".format(accuracy))

实验结果:

数据集:

见所提供资料

相关推荐
心软小念23 分钟前
用Python requests库玩转接口自动化测试!测试工程师的实战秘籍
java·开发语言·python
sanggou2 小时前
【Python爬虫】手把手教你从零开始写爬虫,小白也能轻松学会!(附完整源码)
开发语言·爬虫·python
KG_LLM图谱增强大模型2 小时前
Vgent:基于图的多模态检索推理增强生成框架GraphRAG,突破长视频理解瓶颈
大数据·人工智能·算法·大模型·知识图谱·多模态
AKAMAI2 小时前
企业如何平衡AI创新与风险
人工智能·云原生·云计算
geng_zhaoying2 小时前
在VPython中使用向量计算3D物体移动
python·3d·vpython
半tour费3 小时前
TextCNN-NPU移植与性能优化实战
python·深度学习·分类·cnn·华为云
普通网友3 小时前
使用Flask快速搭建轻量级Web应用
jvm·数据库·python
百锦再3 小时前
第17章 模式与匹配
开发语言·后端·python·rust·django·内存·抽象
普通网友3 小时前
Python函数定义与调用:编写可重用代码的基石
jvm·数据库·python
TDengine (老段)3 小时前
优化 TDengine IDMP 面板编辑的几种方法
人工智能·物联网·ai·时序数据库·tdengine·涛思数据