KNN课堂(分类课堂(可用kd树/特征归一化提高精度)))

实验代码:

导入所需要的库

import numpy as np

import pandas as pd

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

导入数据集

df = pd.read_csv('C:\\Users\\Administrator\\Desktop\\iris.csv')

提取特征和标签

X = df.iloc[:, 0:4].values

y = df.iloc[:, 4].values

将数据集分为训练集和测试集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

建立 KNN 模型

"""

  1. n_neighbors:整数值,表示要考虑的最近邻的数量。

  2. weights:可以是'uniform'或者是'distance',表示在计算最近邻的距离时考虑的权重,'uniform'表示所有最近邻的距离权重都一样,而'distance'表示距离越近的最近邻权重越大。

  3. algorithm:可以是'ball_tree'、'kd_tree'或者'brute',表示使用何种算法来计算最近邻的距离。

  4. leaf_size:整数值,表示在构建 ball_tree 或者 kd_tree 时考虑的叶节点的尺寸。

  5. metric:字符串值,表示使用何种度量来计算最近邻的距离,常用的有'euclidean'(欧几里得距离)和'minkowski'(闵可夫斯基距离)。

"""

knn = KNeighborsClassifier(n_neighbors=5)

knn.fit(X, y)

训练模型

knn.fit(X_train, y_train)

预测测试集结果

y_pred = knn.predict(X_test)

计算准确率

accuracy = knn.score(X_test, y_test)

打印准确率

print("Accuracy: {}".format(accuracy))

实验结果:

数据集:

见所提供资料

相关推荐
Petrichor_H_1 小时前
DAY 31 文件的规范拆分和写法
python
智慧地球(AI·Earth)2 小时前
GPT-5.1发布!你的AI更暖更智能!
人工智能·gpt·神经网络·aigc·agi
宁渡AI大模型2 小时前
从生成内容角度介绍开源AI大模型
人工智能·ai·大模型·qwen
咚咚王者2 小时前
人工智能之编程进阶 Python高级:第九章 爬虫类模块
开发语言·python
xier_ran2 小时前
深度学习:Mini-Batch 梯度下降(Mini-Batch Gradient Descent)
人工智能·深度学习·batch
Microvision维视智造2 小时前
变速箱阀芯上料易错漏?通用 2D 视觉方案高效破局,成汽车制造检测优选!
人工智能
AAA小肥杨2 小时前
探索K8s与AI的结合:PyTorch训练任务在k8s上调度实践
人工智能·pytorch·docker·ai·云原生·kubernetes
深蓝海拓3 小时前
使matplot显示支持中文和负号
开发语言·python
飞哥数智坊3 小时前
TRAE Friends 落地济南!首场线下活动圆满结束
人工智能·trae·solo
m0_527653903 小时前
NVIDIA Orin NX使用Jetpack安装CUDA、cuDNN、TensorRT、VPI时的error及解决方法
linux·人工智能·jetpack·nvidia orin nx