KNN课堂(分类课堂(可用kd树/特征归一化提高精度)))

实验代码:

导入所需要的库

import numpy as np

import pandas as pd

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

导入数据集

df = pd.read_csv('C:\\Users\\Administrator\\Desktop\\iris.csv')

提取特征和标签

X = df.iloc[:, 0:4].values

y = df.iloc[:, 4].values

将数据集分为训练集和测试集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

建立 KNN 模型

"""

  1. n_neighbors:整数值,表示要考虑的最近邻的数量。

  2. weights:可以是'uniform'或者是'distance',表示在计算最近邻的距离时考虑的权重,'uniform'表示所有最近邻的距离权重都一样,而'distance'表示距离越近的最近邻权重越大。

  3. algorithm:可以是'ball_tree'、'kd_tree'或者'brute',表示使用何种算法来计算最近邻的距离。

  4. leaf_size:整数值,表示在构建 ball_tree 或者 kd_tree 时考虑的叶节点的尺寸。

  5. metric:字符串值,表示使用何种度量来计算最近邻的距离,常用的有'euclidean'(欧几里得距离)和'minkowski'(闵可夫斯基距离)。

"""

knn = KNeighborsClassifier(n_neighbors=5)

knn.fit(X, y)

训练模型

knn.fit(X_train, y_train)

预测测试集结果

y_pred = knn.predict(X_test)

计算准确率

accuracy = knn.score(X_test, y_test)

打印准确率

print("Accuracy: {}".format(accuracy))

实验结果:

数据集:

见所提供资料

相关推荐
式5165 分钟前
大模型学习基础(九)LoRA微调原理
人工智能·深度学习·学习
CCPC不拿奖不改名7 分钟前
python基础面试编程题汇总+个人练习(入门+结构+函数+面向对象编程)--需要自取
开发语言·人工智能·python·学习·自然语言处理·面试·职场和发展
菜鸟‍8 分钟前
【论文学习】一种用于医学图像分割单源域泛化的混合双增强约束框架 || 视觉 Transformer 在通用图像分割中的 “缺失环节”
人工智能·深度学习·计算机视觉
五度易链-区域产业数字化管理平台9 分钟前
数观丨2026年半导体集成电路产业融资分析
大数据·人工智能
应用市场9 分钟前
机器学习中的正向反馈循环:从原理到实战应用
人工智能·深度学习·机器学习
我送炭你添花14 分钟前
Pelco KBD300A 模拟器:10.报警联动规则编辑与执行
python·自动化·运维开发
Allen正心正念202532 分钟前
GGUF/GPTQ/AWQ模型对比
人工智能
Coder_Boy_33 分钟前
基于SpringAI的在线考试系统-知识点管理模块完整优化方案
java·前端·人工智能·spring boot
Godspeed Zhao34 分钟前
从零开始学AI3——背景知识2
人工智能
康康的AI博客37 分钟前
多模态大一统:从GPT-4突破到AI领域质的飞跃之路
人工智能·ai