YOLOv5改进--轻量化YOLOv5s模型

文章目录

1、前言

在边缘设备的场景下,目前的YOLOv5s,虽然能够快速实现目标检测,但是运行速度依旧稍慢点,本文在牺牲一点精度前提下,提高目标检测速度,即轻量化YOLOv5s模型,并部署到边缘设备上,可以在CPU上达到实时的检测效果,满足业务的性能需求。

2、轻量化模型结构:

轻量化思路:

1、改进锚框,将对应的锚框全部减半

2、将yolov5s的模型的channels通道数全部都减少一半。

3、训练时,输入图片大小为320,即从 640x640 变为 320x320

原始yolov5s.yaml模型结构

yaml 复制代码
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

轻量化yolov5s-320.yaml结构

python 复制代码
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 10  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [5,6,  8,15,  16,11]  # P3/8
  - [15,30,  31,22,  29,59]  # P4/16
  - [58,45,  78,99,  186,163]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [32, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [64, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [64]],
   [-1, 1, Conv, [128, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [512]],
   [-1, 1, SPPF, [512, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [256, False]],  # 13

   [-1, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [128, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [128, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [256, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [512, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

模型查看

python 复制代码
# 查看模型结构可以运行
python models/yolo.py --cfg yolov5s-320.yaml

# 训练时候设置--img 320
python train.py --batch-size 16 --epochs 100 --img 320 --cfg models/yolov5s-320.yaml --data data/traffic.yaml --weights weights/yolov5s.pt --device 0 > myout.file 2>&1 &

3、模型对比

模型 input-size params(M) GFLOPs precision recall mAP_0.5 mAP_0.5:0.95 模型大小
YOLOv5s 640×640 7.04 15.8 0.987 0.99 0.993 0.828 14.4MB
YOLOv5s-320 320x320 1.77 4.2 0.895 0.992 0.912 0.749 3.9MB

4、训练结果图

这是训练epoch的可视化图,可以看到mAP随着Epoch训练,逐渐提高

这是每个类别的F1-Score分数

这是模型的PR曲线

这是混淆矩阵

5、目标检测文章

  1. YOLOv5s网络模型讲解(一看就会)
  2. 生活垃圾数据集(YOLO版)
  3. YOLOv5如何训练自己的数据集
  4. 双向控制舵机(树莓派版)
  5. 树莓派部署YOLOv5目标检测(详细篇)
  6. YOLO_Tracking 实践 (环境搭建 & 案例测试)
  7. 目标检测:数据集划分 & XML数据集转YOLO标签
相关推荐
天下琴川几秒前
Dify智能体平台源码二次开发笔记(6) - 优化知识库pdf文档的识别
人工智能·笔记·pdf
HenrySmale38 分钟前
信息科技伦理与道德0:课程安排
人工智能·科技·计算机视觉
yngsqq1 小时前
CAD 像素点显示图片——CAD二次开发 OpenCV实现
人工智能·opencv·计算机视觉
Luke Ewin1 小时前
一个基于OpenAI Whisper开发的音视频字幕文件生成工具
人工智能·whisper·音视频·语音识别·asr·语音转写·视频字幕生成
老马啸西风2 小时前
AgentGPT 在浏览器中组装、配置和部署自主 AI 代理 入门介绍
人工智能·ai·openai·agent·robot·deepseek·mcp
京东零售技术2 小时前
京东3D空间视频生成技术探索与应用
人工智能
Jamence2 小时前
多模态大语言模型arxiv论文略读(十六)
人工智能·语言模型·自然语言处理
武汉唯众智创2 小时前
人工智能(机器人)通识实验室解决方案
人工智能·机器人·人工智能实验室·人工智能通识实验室·人工智能通识·机器人通识实验室·机器人实验室
巷9552 小时前
深入理解卷积神经网络(CNN):从原理到实践
人工智能·神经网络·cnn