IJKPLAYER源码分析-OpenSL ES播放

1 前言

与IJKPLAYER处理AudioTrack播放类似,OpenSL ES的接入需要满足SDL_Aout的接口规范,所不同的是OpenSL ES播放是在native完成的,调用的是NDK接口OpenSL ES的播放能力。关于OpenSL ES的详细介绍,请参考官方文档 OpenSL ES 一文。

Pipeline及SDL_Aout结构体及相关创建,与AudioTrack一致,请参考前文IJKPLAYER源码分析-AudioTrack播放-CSDN博客

2 接口

2.1 创建SDL_Aout

创建OpenSL ES的SDL_Aout对象,调用链如下:

复制代码
ijkmp_android_create() => ffpipeline_create_from_android() => func_open_audio_output() => SDL_AoutAndroid_CreateForOpenSLES()

使能opensles选项,缺省为0,即使用AudioTrack播放:

复制代码
    { "opensles",                           "OpenSL ES: enable",
        OPTION_OFFSET(opensles),            OPTION_INT(0, 0, 1) },

若使能了opensles选项,走OpenSL ES播放,相反则走AudioTrack播放:

复制代码
static SDL_Aout *func_open_audio_output(IJKFF_Pipeline *pipeline, FFPlayer *ffp)
{
    SDL_Aout *aout = NULL;
    if (ffp->opensles) {
        aout = SDL_AoutAndroid_CreateForOpenSLES();
    } else {
        aout = SDL_AoutAndroid_CreateForAudioTrack();
    }
    if (aout)
        SDL_AoutSetStereoVolume(aout, pipeline->opaque->left_volume, pipeline->opaque->right_volume);
    return aout;
}

OpenSL ES的SDL_Aout对象创建具体在此,遵循SDL_Aout接口规范:

复制代码
SDL_Aout *SDL_AoutAndroid_CreateForOpenSLES()
{
    SDLTRACE("%s\n", __func__);
    SDL_Aout *aout = SDL_Aout_CreateInternal(sizeof(SDL_Aout_Opaque));
    if (!aout)
        return NULL;

    SDL_Aout_Opaque *opaque = aout->opaque;
    opaque->wakeup_cond = SDL_CreateCond();
    opaque->wakeup_mutex = SDL_CreateMutex();

    int ret = 0;

    SLObjectItf slObject = NULL;
    ret = slCreateEngine(&slObject, 0, NULL, 0, NULL, NULL);
    CHECK_OPENSL_ERROR(ret, "%s: slCreateEngine() failed", __func__);
    opaque->slObject = slObject;

    ret = (*slObject)->Realize(slObject, SL_BOOLEAN_FALSE);
    CHECK_OPENSL_ERROR(ret, "%s: slObject->Realize() failed", __func__);

    SLEngineItf slEngine = NULL;
    ret = (*slObject)->GetInterface(slObject, SL_IID_ENGINE, &slEngine);
    CHECK_OPENSL_ERROR(ret, "%s: slObject->GetInterface() failed", __func__);
    opaque->slEngine = slEngine;

    SLObjectItf slOutputMixObject = NULL;
    const SLInterfaceID ids1[] = {SL_IID_VOLUME};
    const SLboolean req1[] = {SL_BOOLEAN_FALSE};
    ret = (*slEngine)->CreateOutputMix(slEngine, &slOutputMixObject, 1, ids1, req1);
    CHECK_OPENSL_ERROR(ret, "%s: slEngine->CreateOutputMix() failed", __func__);
    opaque->slOutputMixObject = slOutputMixObject;

    ret = (*slOutputMixObject)->Realize(slOutputMixObject, SL_BOOLEAN_FALSE);
    CHECK_OPENSL_ERROR(ret, "%s: slOutputMixObject->Realize() failed", __func__);

    aout->free_l       = aout_free_l;
    aout->opaque_class = &g_opensles_class;
    aout->open_audio   = aout_open_audio;
    aout->pause_audio  = aout_pause_audio;
    aout->flush_audio  = aout_flush_audio;
    aout->close_audio  = aout_close_audio;
    aout->set_volume   = aout_set_volume;
    aout->func_get_latency_seconds = aout_get_latency_seconds;

    return aout;
fail:
    aout_free_l(aout);
    return NULL;
}

2.2 func_get_latency_seconds接口

  • 此接口是OpenSL ES相比于AudioTrack新增的1个接口;
  • 作用是:用来计算OpenSL ES底层buffer缓存了多少ms的音频数据,音视频同步时用来纠正音频的时钟;

与AudioTrack相比,OpenSL ES增加了func_get_latency_seconds接口:

复制代码
    aout->func_get_latency_seconds = aout_get_latency_seconds;

此接口的具体实现:

复制代码
static double aout_get_latency_seconds(SDL_Aout *aout)
{
    SDL_Aout_Opaque *opaque = aout->opaque;

    SLAndroidSimpleBufferQueueState state = {0};
    SLresult slRet = (*opaque->slBufferQueueItf)->GetState(opaque->slBufferQueueItf, &state);
    if (slRet != SL_RESULT_SUCCESS) {
        ALOGE("%s failed\n", __func__);
        return ((double)opaque->milli_per_buffer) * OPENSLES_BUFFERS / 1000;
    }

    // assume there is always a buffer in coping
    // state.count表示已用buffer个数
    double latency = ((double)opaque->milli_per_buffer) * state.count / 1000;
    return latency;
}

以上就是OpenSL ES的SDL_Aout创建过程,大致与AudioTrack类似,遵循了SDL_Aout的接口规范,所不同的是OpenSL ES增加了func_get_latency_seconds接口,用来计算底层缓存的音频ms数;

3 open_audio

3.1 初始化

OpenSL ES的打开,即OpenSL ES的初始化,主要做以下事情:

  • OpenSL ES的open_audio接口,大致功能与AudioTrack类似;

  • 将音频源的采样参数(采样率、通道数、采样位深)告诉OpenSL ES,并调用CreateAudioPlayer()创建SLObjectItf类型的播放器实例;

  • 使用播放器实例,查询SLPlayItf实例/SLVolumeItf实例/SLAndroidSimpleBufferQueueItf实例;

  • 使用播放器实例SLAndroidSimpleBufferQueueItf类型队列实例,并给该队列注册callback;

  • 根据最终的音频参数(采样率、通道数、采样位深),以及OpenSL ES每个buffer所能容纳的音频PCM数据量(10ms),,计算出最终的buffer总容量,并分配buffer内存;

  • 启动1个audio_thread线程,此线程的作用与AudioTrack的audio_thread作用一致,异步执行所有关于音频的操作,取得音频的PCM数据并喂给OpenSL ES;

  • 将最终的音频参数保存在全局变量is->audio_tgt中,后续若音频参数发生变更,需要重采样并且重置is->audio_tgt的值;

  • 设置OpenSL ES的缺省延迟时间,即OpenSL ES最多缓存了多少秒的PCM数据,此值在音视频同步时纠正音频的时钟有重要用处;

复制代码
    // 设置缺省时延,若有func_set_default_latency_seconds回调则通过回调更新,没有则设置变量minimal_latency_seconds的值
    SDL_AoutSetDefaultLatencySeconds(ffp->aout, ((double)(2 * spec.size)) / audio_hw_params->bytes_per_sec);

3.2 pcm buffer

定义OpenSL ES每个buffer的音频容量,即能装下10ms的PCM数据,一共由255个音频buffer组成,即10 * 255 = 2550ms的数据。

2个参数的具体宏定义请参照:

复制代码
#define OPENSLES_BUFFERS 255 /* maximum number of buffers */
#define OPENSLES_BUFLEN  10 /* ms */

计算最终OpenGL ES的buffer容量,并分配buffer:

复制代码
    // 对于opensl es来说,播放的是pcm数据,每个pcm为1帧
    opaque->bytes_per_frame   = format_pcm->numChannels * format_pcm->bitsPerSample / 8;
    // 对于opensl es来说,每次播放10ms的pcm数据
    opaque->milli_per_buffer  = OPENSLES_BUFLEN;
    // 每OPENSLES_BUFLEN=10ms有多少pcm帧
    opaque->frames_per_buffer = opaque->milli_per_buffer * format_pcm->samplesPerSec / 1000000; // samplesPerSec is in milli
    opaque->bytes_per_buffer  = opaque->bytes_per_frame * opaque->frames_per_buffer;
    opaque->buffer_capacity   = OPENSLES_BUFFERS * opaque->bytes_per_buffer;
    ALOGI("OpenSL-ES: bytes_per_frame  = %d bytes\n",  (int)opaque->bytes_per_frame);
    ALOGI("OpenSL-ES: milli_per_buffer = %d ms\n",     (int)opaque->milli_per_buffer);
    ALOGI("OpenSL-ES: frame_per_buffer = %d frames\n", (int)opaque->frames_per_buffer);
    ALOGI("OpenSL-ES: bytes_per_buffer = %d bytes\n",  (int)opaque->bytes_per_buffer);
    ALOGI("OpenSL-ES: buffer_capacity  = %d bytes\n",  (int)opaque->buffer_capacity);
    // 分配最终的pcm缓冲区
    opaque->buffer          = malloc(opaque->buffer_capacity);
    CHECK_COND_ERROR(opaque->buffer, "%s: failed to alloc buffer %d\n", __func__, (int)opaque->buffer_capacity);

    // (*opaque->slPlayItf)->SetPositionUpdatePeriod(opaque->slPlayItf, 1000);

    // enqueue empty buffer to start play
    memset(opaque->buffer, 0, opaque->buffer_capacity);
    for(int i = 0; i < OPENSLES_BUFFERS; ++i) {
        ret = (*opaque->slBufferQueueItf)->Enqueue(opaque->slBufferQueueItf, opaque->buffer + i * opaque->bytes_per_buffer, opaque->bytes_per_buffer);
        CHECK_OPENSL_ERROR(ret, "%s: slBufferQueueItf->Enqueue(000...) failed", __func__);
    }

值得一提的是,OpenGL ES在此所支持的音频采样参数如下:

复制代码
    CHECK_COND_ERROR((desired->format == AUDIO_S16SYS), "%s: not AUDIO_S16SYS", __func__);
    CHECK_COND_ERROR((desired->channels == 2 || desired->channels == 1), "%s: not 1,2 channel", __func__);
    CHECK_COND_ERROR((desired->freq >= 8000 && desired->freq <= 48000), "%s: unsupport freq %d Hz", __func__, desired->freq);

3.3 调用流程

打开OpenSL ES的调用链,其实是和AudioTrack一致,因为他们遵循了同样的接口规范SDL_Aout,具体如下:

复制代码
read_thread() => stream_component_open() => audio_open() => SDL_AoutOpenAudio() => aout_open_audio()

最后,走到aout_open_audio方法:

复制代码
static int aout_open_audio(SDL_Aout *aout, const SDL_AudioSpec *desired, SDL_AudioSpec *obtained)
{
    SDLTRACE("%s\n", __func__);
    assert(desired);
    SDLTRACE("aout_open_audio()\n");
    SDL_Aout_Opaque  *opaque     = aout->opaque;
    SLEngineItf       slEngine   = opaque->slEngine;
    SLDataFormat_PCM *format_pcm = &opaque->format_pcm;
    int               ret = 0;

    opaque->spec = *desired;

    // config audio src
    SLDataLocator_AndroidSimpleBufferQueue loc_bufq = {
        SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE,
        OPENSLES_BUFFERS
    };

    int native_sample_rate = audiotrack_get_native_output_sample_rate(NULL);
    ALOGI("OpenSL-ES: native sample rate %d Hz\n", native_sample_rate);

    // opensl es仅支持以下参数的audio pcm播放
    CHECK_COND_ERROR((desired->format == AUDIO_S16SYS), "%s: not AUDIO_S16SYS", __func__);
    CHECK_COND_ERROR((desired->channels == 2 || desired->channels == 1), "%s: not 1,2 channel", __func__);
    CHECK_COND_ERROR((desired->freq >= 8000 && desired->freq <= 48000), "%s: unsupport freq %d Hz", __func__, desired->freq);
    if (SDL_Android_GetApiLevel() < IJK_API_21_LOLLIPOP &&
        native_sample_rate > 0 &&
        desired->freq < native_sample_rate) {
        // Don't try to play back a sample rate higher than the native one,
        // since OpenSL ES will try to use the fast path, which AudioFlinger
        // will reject (fast path can't do resampling), and will end up with
        // too small buffers for the resampling. See http://b.android.com/59453
        // for details. This bug is still present in 4.4. If it is fixed later
        // this workaround could be made conditional.
        //
        // by VLC/android_opensles.c
        ALOGW("OpenSL-ES: force resample %lu to native sample rate %d\n",
              (unsigned long) format_pcm->samplesPerSec / 1000,
              (int) native_sample_rate);
        format_pcm->samplesPerSec = native_sample_rate * 1000;
    }

    format_pcm->formatType       = SL_DATAFORMAT_PCM;
    format_pcm->numChannels      = desired->channels;
    format_pcm->samplesPerSec    = desired->freq * 1000; // milli Hz
    // format_pcm->numChannels      = 2;
    // format_pcm->samplesPerSec    = SL_SAMPLINGRATE_44_1;

    format_pcm->bitsPerSample    = SL_PCMSAMPLEFORMAT_FIXED_16;
    format_pcm->containerSize    = SL_PCMSAMPLEFORMAT_FIXED_16;
    switch (desired->channels) {
    case 2:
        format_pcm->channelMask  = SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT;
        break;
    case 1:
        format_pcm->channelMask  = SL_SPEAKER_FRONT_CENTER;
        break;
    default:
        ALOGE("%s, invalid channel %d", __func__, desired->channels);
        goto fail;
    }
    format_pcm->endianness       = SL_BYTEORDER_LITTLEENDIAN;

    SLDataSource audio_source = {&loc_bufq, format_pcm};

    // config audio sink
    SLDataLocator_OutputMix loc_outmix = {
        SL_DATALOCATOR_OUTPUTMIX,
        opaque->slOutputMixObject
    };
    SLDataSink audio_sink = {&loc_outmix, NULL};

    SLObjectItf slPlayerObject = NULL;
    const SLInterfaceID ids2[] = { SL_IID_ANDROIDSIMPLEBUFFERQUEUE, SL_IID_VOLUME, SL_IID_PLAY };
    static const SLboolean req2[] = { SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE };
    // 在此将audio的采样参数传递给opensl es
    ret = (*slEngine)->CreateAudioPlayer(slEngine, &slPlayerObject, &audio_source,
                                &audio_sink, sizeof(ids2) / sizeof(*ids2),
                                ids2, req2);
    CHECK_OPENSL_ERROR(ret, "%s: slEngine->CreateAudioPlayer() failed", __func__);
    opaque->slPlayerObject = slPlayerObject;

    ret = (*slPlayerObject)->Realize(slPlayerObject, SL_BOOLEAN_FALSE);
    CHECK_OPENSL_ERROR(ret, "%s: slPlayerObject->Realize() failed", __func__);

    ret = (*slPlayerObject)->GetInterface(slPlayerObject, SL_IID_PLAY, &opaque->slPlayItf);
    CHECK_OPENSL_ERROR(ret, "%s: slPlayerObject->GetInterface(SL_IID_PLAY) failed", __func__);

    ret = (*slPlayerObject)->GetInterface(slPlayerObject, SL_IID_VOLUME, &opaque->slVolumeItf);
    CHECK_OPENSL_ERROR(ret, "%s: slPlayerObject->GetInterface(SL_IID_VOLUME) failed", __func__);

    ret = (*slPlayerObject)->GetInterface(slPlayerObject, SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &opaque->slBufferQueueItf);
    CHECK_OPENSL_ERROR(ret, "%s: slPlayerObject->GetInterface(SL_IID_ANDROIDSIMPLEBUFFERQUEUE) failed", __func__);

    ret = (*opaque->slBufferQueueItf)->RegisterCallback(opaque->slBufferQueueItf, aout_opensles_callback, (void*)aout);
    CHECK_OPENSL_ERROR(ret, "%s: slBufferQueueItf->RegisterCallback() failed", __func__);

    // set the player's state to playing
    // ret = (*opaque->slPlayItf)->SetPlayState(opaque->slPlayItf, SL_PLAYSTATE_PLAYING);
    // CHECK_OPENSL_ERROR(ret, "%s: slBufferQueueItf->slPlayItf() failed", __func__);

    // 对于opensl es来说,播放的是pcm数据,每个pcm为1帧
    opaque->bytes_per_frame   = format_pcm->numChannels * format_pcm->bitsPerSample / 8;
    // 对于opensl es来说,每次播放是10ms的pcm数据
    opaque->milli_per_buffer  = OPENSLES_BUFLEN;
    // 每OPENSLES_BUFLEN 10ms有多少pcm帧
    opaque->frames_per_buffer = opaque->milli_per_buffer * format_pcm->samplesPerSec / 1000000; // samplesPerSec is in milli
    opaque->bytes_per_buffer  = opaque->bytes_per_frame * opaque->frames_per_buffer;
    opaque->buffer_capacity   = OPENSLES_BUFFERS * opaque->bytes_per_buffer;
    ALOGI("OpenSL-ES: bytes_per_frame  = %d bytes\n",  (int)opaque->bytes_per_frame);
    ALOGI("OpenSL-ES: milli_per_buffer = %d ms\n",     (int)opaque->milli_per_buffer);
    ALOGI("OpenSL-ES: frame_per_buffer = %d frames\n", (int)opaque->frames_per_buffer);
    ALOGI("OpenSL-ES: bytes_per_buffer = %d bytes\n",  (int)opaque->bytes_per_buffer);
    ALOGI("OpenSL-ES: buffer_capacity  = %d bytes\n",  (int)opaque->buffer_capacity);
    // 根据计算出来的buffer_capacity分配buffer
    opaque->buffer          = malloc(opaque->buffer_capacity);
    CHECK_COND_ERROR(opaque->buffer, "%s: failed to alloc buffer %d\n", __func__, (int)opaque->buffer_capacity);

    // (*opaque->slPlayItf)->SetPositionUpdatePeriod(opaque->slPlayItf, 1000);

    // enqueue empty buffer to start play
    memset(opaque->buffer, 0, opaque->buffer_capacity);
    for(int i = 0; i < OPENSLES_BUFFERS; ++i) {
        ret = (*opaque->slBufferQueueItf)->Enqueue(opaque->slBufferQueueItf, opaque->buffer + i * opaque->bytes_per_buffer, opaque->bytes_per_buffer);
        CHECK_OPENSL_ERROR(ret, "%s: slBufferQueueItf->Enqueue(000...) failed", __func__);
    }

    opaque->pause_on = 1;
    opaque->abort_request = 0;
    opaque->audio_tid = SDL_CreateThreadEx(&opaque->_audio_tid, aout_thread, aout, "ff_aout_opensles");
    CHECK_COND_ERROR(opaque->audio_tid, "%s: failed to SDL_CreateThreadEx", __func__);

    if (obtained) {
        *obtained      = *desired;
        // opensl es音频硬件的缓冲区容量
        obtained->size = opaque->buffer_capacity;
        obtained->freq = format_pcm->samplesPerSec / 1000;
    }

    return opaque->buffer_capacity;
fail:
    aout_close_audio(aout);
    return -1;
}

以上就是OpenSL ES的完整初始化流程。

4 audio_thread

该线程主要做以下事情:

  • 响应业务侧对声音的操作,异步处理诸如play()/pause()/flush()/setVolume()等操作;
  • 通过sdl_audio_callback回调,取得PCM数据,再喂给OpenSL ES播放;
  • 每次取的PCM数据数是opaque->bytes_per_buffer,即OPENSLES_BUFLEN=10ms的PCM数据;

4.1 执行操作

在此临界区执行对声音的操作,播放/暂停/调节音量/flush()等:

复制代码
        SLAndroidSimpleBufferQueueState slState = {0};

        SLresult slRet = (*slBufferQueueItf)->GetState(slBufferQueueItf, &slState);
        if (slRet != SL_RESULT_SUCCESS) {
            ALOGE("%s: slBufferQueueItf->GetState() failed\n", __func__);
            SDL_UnlockMutex(opaque->wakeup_mutex);
        }

        SDL_LockMutex(opaque->wakeup_mutex);
        if (!opaque->abort_request && (opaque->pause_on || slState.count >= OPENSLES_BUFFERS)) {
            while (!opaque->abort_request && (opaque->pause_on || slState.count >= OPENSLES_BUFFERS)) {
                if (!opaque->pause_on) {
                    (*slPlayItf)->SetPlayState(slPlayItf, SL_PLAYSTATE_PLAYING);
                }
                SDL_CondWaitTimeout(opaque->wakeup_cond, opaque->wakeup_mutex, 1000);
                SLresult slRet = (*slBufferQueueItf)->GetState(slBufferQueueItf, &slState);
                if (slRet != SL_RESULT_SUCCESS) {
                    ALOGE("%s: slBufferQueueItf->GetState() failed\n", __func__);
                    SDL_UnlockMutex(opaque->wakeup_mutex);
                }

                if (opaque->pause_on)
                    (*slPlayItf)->SetPlayState(slPlayItf, SL_PLAYSTATE_PAUSED);
            }
            if (!opaque->abort_request && !opaque->pause_on) {
                (*slPlayItf)->SetPlayState(slPlayItf, SL_PLAYSTATE_PLAYING);
            }
        }
        if (opaque->need_flush) {
            opaque->need_flush = 0;
            (*slBufferQueueItf)->Clear(slBufferQueueItf);
        }

        if (opaque->need_set_volume) {
            opaque->need_set_volume = 0;
            SLmillibel level = android_amplification_to_sles((opaque->left_volume + opaque->right_volume) / 2);
            ALOGI("slVolumeItf->SetVolumeLevel((%f, %f) -> %d)\n", opaque->left_volume, opaque->right_volume, (int)level);
            slRet = (*slVolumeItf)->SetVolumeLevel(slVolumeItf, level);
            if (slRet != SL_RESULT_SUCCESS) {
                ALOGE("slVolumeItf->SetVolumeLevel failed %d\n", (int)slRet);
                // just ignore error
            }
        }
        SDL_UnlockMutex(opaque->wakeup_mutex);
    
        ......

4.2 sdl_audio_callback

此处与AudioTrack逻辑一致,请参考 IJKPLAYER源码分析-AudioTrack播放-CSDN博客

  • 确保通过此callback取得opaque->bytes_per_buffer字节的PCM数据即可,无论是静音PCM数据抑或真实的可播放的PCM数据;

4.3 喂PCM数据

再将取得的PCM数据喂给OpenSL ES播放即可:

复制代码
        ......

        next_buffer = opaque->buffer + next_buffer_index * bytes_per_buffer;
        next_buffer_index = (next_buffer_index + 1) % OPENSLES_BUFFERS;
        audio_cblk(userdata, next_buffer, bytes_per_buffer);
        if (opaque->need_flush) {
            (*slBufferQueueItf)->Clear(slBufferQueueItf);
            opaque->need_flush = false;
        }

        if (opaque->need_flush) {
            ALOGE("flush");
            opaque->need_flush = 0;
            (*slBufferQueueItf)->Clear(slBufferQueueItf);
        } else {
            // 每次送给opensl es的Audio样本byte数为OPENSLES_BUFLEN=10ms所采集的PCM样本
            slRet = (*slBufferQueueItf)->Enqueue(slBufferQueueItf, next_buffer, bytes_per_buffer);
            if (slRet == SL_RESULT_SUCCESS) {
                // do nothing
            } else if (slRet == SL_RESULT_BUFFER_INSUFFICIENT) {
                // don't retry, just pass through
                ALOGE("SL_RESULT_BUFFER_INSUFFICIENT\n");
            } else {
                ALOGE("slBufferQueueItf->Enqueue() = %d\n", (int)slRet);
                break;
            }
        }
相关推荐
EasyDSS3 小时前
WebRTC技术下的EasyRTC音视频实时通话SDK,助力车载通信打造安全高效的智能出行体验
人工智能·音视频
Eric.Lee20214 小时前
python opencv 将不同shape尺寸的图片制作video视频
python·opencv·音视频
灰色人生qwer13 小时前
使用WebSocket实现跨多个服务器传输音频及实时语音识别
websocket·音视频·实时传输
小鱼仙官15 小时前
Ubuntu 编译SRS和ZLMediaKit用于视频推拉流
音视频
摆烂仙君17 小时前
视频分辨率增强与自动补帧
音视频
海姐软件测试1 天前
抖音视频上传功能测试全维度拆解——从基础功能到隐藏缺陷的深度挖掘
功能测试·音视频
DogDaoDao1 天前
视频图像压缩领域中 DCT 的 DC 系数和 AC 系数详解
图像处理·音视频·视频编解码·dct·图像压缩·变换编码·离散余弦变换
fydw_7151 天前
音频生成技术的前沿探索:从语音合成到智能Podcast
人工智能·音视频·语音识别
18538162800余。1 天前
碰一碰发视频源码搭建,支持OEM
音视频
macken99991 天前
音频分类的学习
人工智能·深度学习·学习·计算机视觉·音视频