使用yolov8实现自动车牌识别(教程+代码)

该项目利用了一个被标记为"YOLOv8"的目标检测模型,专门针对车牌识别任务进行训练和优化。整个系统通常分为以下几个核心步骤:

  1. 数据准备

    • 收集包含车牌的大量图片,并精确地标记车牌的位置和文本信息。
    • 数据集可能包含各种环境下的车牌,如不同光照条件、角度、遮挡情况等,以确保模型泛化能力。
  2. 模型训练

    • 使用改进或假设的YOLOv8架构加载预训练权重(如果有),并在此基础上微调模型以适应车牌检测任务。
    • 训练过程涉及调整超参数、优化器设置,以及迭代训练至模型在验证集上达到满意的性能。
  3. 车牌检测

    • 将训练好的YOLOv8模型应用于输入的图像或视频流,以实时或批量模式进行车牌区域检测。
    • 通过模型的输出解析出车牌的边界框坐标。
  4. 车牌字符识别(OCR)

    • 对检测到的车牌区域进行裁剪并做进一步预处理(如灰度化、二值化、平滑、倾斜校正等)。
    • 使用单独的OCR模型(如LPRNet或其他专门的车牌字符识别网络)识别出车牌上的每一个字符。
  5. 结果输出

    • 根据字符识别的结果拼接出完整的车牌号码,并显示或记录在系统中。

使用Yolov8预训练模型(YOLOv8n)检测车辆。

使用有执照的车牌检测器来检测车牌。该模型使用该数据集使用 Yolov8 进行训练。

项目设置

  • 使用以下命令使用 python=3.8 创建环境

    conda create --prefix ./env python==3.8 -y

  • 激活环境

    conda activate ./env

  • 使用以下命令安装项目依赖项

    pip install -r requirements.txt

  • 使用示例视频文件运行 main.py 以生成test.csv文件

    python main.py

  • 运行 add_missing_data.py 文件以插入值以匹配缺失的帧和平滑输出。

    python add_missing_data.py

  • 最后运行 visualize.py 传入插值的 csv 文件,从而获得用于车牌检测的平滑输出。

    python visualize.py

效果如图:

相关推荐
红苕稀饭6661 小时前
RISE论文阅读
论文阅读·人工智能·计算机视觉
cxr8282 小时前
分享一个知识工程师单体智能体的简单提示词
人工智能·智能体·提示词工程·ai赋能·上下文工程
w0000062 小时前
图像分类项目
人工智能·分类·数据挖掘
扫地的小何尚3 小时前
NVIDIA Dynamo深度解析:如何优雅地解决LLM推理中的KV缓存瓶颈
开发语言·人工智能·深度学习·机器学习·缓存·llm·nvidia
张较瘦_6 小时前
[论文阅读] AI赋能 | 当AI看懂交通摄像头:多模态大模型零样本检测的实战报告
论文阅读·人工智能
cxr8286 小时前
BMAD框架实践:掌握story-checklist提升用户故事质量
前端·人工智能·agi·智能体·ai赋能
Dongsheng_20197 小时前
【汽车篇】AI深度学习在汽车零部件外观检测——机电轴承的应用
人工智能·深度学习·汽车
江瀚视野7 小时前
汽车价格战全面熄火了?不卷价格该卷什么?
人工智能·自动驾驶
资讯全球8 小时前
2025年智慧差旅平台推荐
人工智能
en-route8 小时前
从零开始学神经网络——LSTM(长短期记忆网络)
人工智能·深度学习·lstm