使用yolov8实现自动车牌识别(教程+代码)

该项目利用了一个被标记为"YOLOv8"的目标检测模型,专门针对车牌识别任务进行训练和优化。整个系统通常分为以下几个核心步骤:

  1. 数据准备

    • 收集包含车牌的大量图片,并精确地标记车牌的位置和文本信息。
    • 数据集可能包含各种环境下的车牌,如不同光照条件、角度、遮挡情况等,以确保模型泛化能力。
  2. 模型训练

    • 使用改进或假设的YOLOv8架构加载预训练权重(如果有),并在此基础上微调模型以适应车牌检测任务。
    • 训练过程涉及调整超参数、优化器设置,以及迭代训练至模型在验证集上达到满意的性能。
  3. 车牌检测

    • 将训练好的YOLOv8模型应用于输入的图像或视频流,以实时或批量模式进行车牌区域检测。
    • 通过模型的输出解析出车牌的边界框坐标。
  4. 车牌字符识别(OCR)

    • 对检测到的车牌区域进行裁剪并做进一步预处理(如灰度化、二值化、平滑、倾斜校正等)。
    • 使用单独的OCR模型(如LPRNet或其他专门的车牌字符识别网络)识别出车牌上的每一个字符。
  5. 结果输出

    • 根据字符识别的结果拼接出完整的车牌号码,并显示或记录在系统中。

使用Yolov8预训练模型(YOLOv8n)检测车辆。

使用有执照的车牌检测器来检测车牌。该模型使用该数据集使用 Yolov8 进行训练。

项目设置

  • 使用以下命令使用 python=3.8 创建环境

    conda create --prefix ./env python==3.8 -y

  • 激活环境

    conda activate ./env

  • 使用以下命令安装项目依赖项

    pip install -r requirements.txt

  • 使用示例视频文件运行 main.py 以生成test.csv文件

    python main.py

  • 运行 add_missing_data.py 文件以插入值以匹配缺失的帧和平滑输出。

    python add_missing_data.py

  • 最后运行 visualize.py 传入插值的 csv 文件,从而获得用于车牌检测的平滑输出。

    python visualize.py

效果如图:

相关推荐
康康的AI博客10 小时前
AI大模型API中转站全方位解析
人工智能
深圳博众测控10 小时前
博众测控 | ISO 16750-2:2023汽车电气测试新标准解读:关键变化与测试设备选型
人工智能·测试工具·汽车
Dfreedom.10 小时前
图像灰度处理与二值化
图像处理·人工智能·opencv·计算机视觉
前网易架构师-高司机10 小时前
带标注信息的手机识别数据集,92.8%识别率,可识别户外公共场所的人是否带手机,支持yolo, coco json,pascal voc xml格式
yolo·手机·数据集·公共·户外·携带
老兵发新帖11 小时前
关于ONNX和pytorch,我们应该怎么做?结合训练和推理
人工智能
方安乐11 小时前
杂记:对齐研究(AI alignment)
人工智能
方见华Richard11 小时前
世毫九《认知几何学修订版:从离散概念网络到认知拓扑动力学》
人工智能·经验分享·交互·原型模式·空间计算
人工智能培训11 小时前
基于Transformer的人工智能模型搭建与fine-tuning
人工智能·深度学习·机器学习·transformer·知识图谱·数字孪生·大模型幻觉
emma羊羊12 小时前
【AI技术安全】
网络·人工智能·安全
玄同76512 小时前
告别 AgentExecutor:LangChain v1.0+ Agent 模块深度迁移指南与实战全解析
人工智能·语言模型·自然语言处理·langchain·nlp·agent·智能体