使用yolov8实现自动车牌识别(教程+代码)

该项目利用了一个被标记为"YOLOv8"的目标检测模型,专门针对车牌识别任务进行训练和优化。整个系统通常分为以下几个核心步骤:

  1. 数据准备

    • 收集包含车牌的大量图片,并精确地标记车牌的位置和文本信息。
    • 数据集可能包含各种环境下的车牌,如不同光照条件、角度、遮挡情况等,以确保模型泛化能力。
  2. 模型训练

    • 使用改进或假设的YOLOv8架构加载预训练权重(如果有),并在此基础上微调模型以适应车牌检测任务。
    • 训练过程涉及调整超参数、优化器设置,以及迭代训练至模型在验证集上达到满意的性能。
  3. 车牌检测

    • 将训练好的YOLOv8模型应用于输入的图像或视频流,以实时或批量模式进行车牌区域检测。
    • 通过模型的输出解析出车牌的边界框坐标。
  4. 车牌字符识别(OCR)

    • 对检测到的车牌区域进行裁剪并做进一步预处理(如灰度化、二值化、平滑、倾斜校正等)。
    • 使用单独的OCR模型(如LPRNet或其他专门的车牌字符识别网络)识别出车牌上的每一个字符。
  5. 结果输出

    • 根据字符识别的结果拼接出完整的车牌号码,并显示或记录在系统中。

使用Yolov8预训练模型(YOLOv8n)检测车辆。

使用有执照的车牌检测器来检测车牌。该模型使用该数据集使用 Yolov8 进行训练。

项目设置

  • 使用以下命令使用 python=3.8 创建环境

    conda create --prefix ./env python==3.8 -y

  • 激活环境

    conda activate ./env

  • 使用以下命令安装项目依赖项

    pip install -r requirements.txt

  • 使用示例视频文件运行 main.py 以生成test.csv文件

    python main.py

  • 运行 add_missing_data.py 文件以插入值以匹配缺失的帧和平滑输出。

    python add_missing_data.py

  • 最后运行 visualize.py 传入插值的 csv 文件,从而获得用于车牌检测的平滑输出。

    python visualize.py

效果如图:

相关推荐
囊中之锥.4 分钟前
机器学习第三部分---决策树
人工智能·决策树·机器学习
YJlio29 分钟前
ProcessExplorer_17.09_x64-Chs 新版本升级:我看到的区别与优势(含升级思路与注意点)
人工智能·笔记·学习
Aaron158842 分钟前
基于RFSOC+VU13P+GPU架构在雷达电子战的技术
人工智能·算法·fpga开发·架构·硬件工程·信号处理·基带工程
yiersansiwu123d42 分钟前
AI大模型的技术演进与产业赋能:迈向协同共生的智能新时代
人工智能
weisian1511 小时前
入门篇--人工智能发展史-4-点燃深度学习革命的那把火,AlexNet
人工智能·深度学习
梦帮科技1 小时前
Scikit-learn特征工程实战:从数据清洗到提升模型20%准确率
人工智能·python·机器学习·数据挖掘·开源·极限编程
想用offer打牌1 小时前
LLM参数: Temperature 与 Top-p解析
人工智能·python·llm
kimi-2221 小时前
三种调用 ChatOllama 的方式
人工智能
公链开发2 小时前
链游开发全路径赋能:如何重塑从创意到生态的完整闭环
大数据·人工智能·ux
安徽正LU o561-6o623o72 小时前
露-大鼠活动记录仪 小动物活动记录仪
人工智能