LeetCode-45. 跳跃游戏 II【贪心 数组 动态规划】

LeetCode-45. 跳跃游戏 II【贪心 数组 动态规划】

题目描述:

给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。

每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:

0 <= j <= nums[i]

i + j < n

返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]。

示例 1:

输入: nums = [2,3,1,1,4]

输出: 2

解释: 跳到最后一个位置的最小跳跃数是 2。

从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。

示例 2:

输入: nums = [2,3,0,1,4]

输出: 2

提示:

1 <= nums.length <= 10^4^

0 <= nums[i] <= 1000

题目保证可以到达 nums[n-1]

解题思路一:Python 贪心

如果当前覆盖最远距离下标不是是集合终点,步数就加一,还需要继续走。

如果当前覆盖最远距离下标就是是集合终点,步数不用加一,因为不能再往后走了。

python 复制代码
class Solution:
    def jump(self, nums):
        if len(nums) == 1:
            return 0
        
        cur_distance = 0  # 当前覆盖最远距离下标
        ans = 0  # 记录走的最大步数
        next_distance = 0  # 下一步覆盖最远距离下标
        
        for i in range(len(nums)):
            next_distance = max(nums[i] + i, next_distance)  # 更新下一步覆盖最远距离下标
            if i == cur_distance:  # 遇到当前覆盖最远距离下标
                ans += 1  # 需要走下一步
                cur_distance = next_distance  # 更新当前覆盖最远距离下标(相当于加油了)
                if next_distance >= len(nums) - 1:  # 当前覆盖最远距离达到数组末尾,不用再做ans++操作,直接结束
                    break
        
        return ans

时间复杂度:O(n)

空间复杂度:O(1)

解题思路二:贪心优化

其精髓在于控制移动下标 i 只移动到 nums.size() - 2 的位置,所以移动下标只要遇到当前覆盖最远距离的下标,直接步数加一,不用考虑别的了。

python 复制代码
class Solution:
    def jump(self, nums):
        cur_distance = 0  # 当前覆盖的最远距离下标
        ans = 0  # 记录走的最大步数
        next_distance = 0  # 下一步覆盖的最远距离下标
        
        for i in range(len(nums) - 1):  # 注意这里是小于len(nums) - 1,这是关键所在
            next_distance = max(nums[i] + i, next_distance)  # 更新下一步覆盖的最远距离下标
            if i == cur_distance:  # 遇到当前覆盖的最远距离下标
                cur_distance = next_distance  # 更新当前覆盖的最远距离下标
                ans += 1
        
        return ans

时间复杂度:O(n)

空间复杂度:O(1)

解题思路三:类似于跳跃游戏一的写法

LeetCode-55. 跳跃游戏【贪心 数组 动态规划】

python 复制代码
class Solution:
    def jump(self, nums) -> int:
        if len(nums)==1:  # 如果数组只有一个元素,不需要跳跃,步数为0
            return 0
        
        i = 0  # 当前位置
        count = 0  # 步数计数器
        cover = 0  # 当前能够覆盖的最远距离
        
        while i <= cover:  # 当前位置小于等于当前能够覆盖的最远距离时循环
            for i in range(i, cover+1):  # 遍历从当前位置到当前能够覆盖的最远距离之间的所有位置
                cover = max(nums[i]+i, cover)  # 更新当前能够覆盖的最远距离
                if cover >= len(nums)-1:  # 如果当前能够覆盖的最远距离达到或超过数组的最后一个位置,直接返回步数+1
                    return count+1
            count += 1  # 每一轮遍历结束后,步数+1

时间复杂度:O(n)

空间复杂度:O(1)

解题思路四:动态规划

python 复制代码
class Solution:
    def jump(self, nums: List[int]) -> int:
        result = [10**4+1] * len(nums)  # 初始化结果数组,初始值为一个较大的数
        result[0] = 0  # 起始位置的步数为0

        for i in range(len(nums)):  # 遍历数组
            for j in range(nums[i] + 1):  # 在当前位置能够跳跃的范围内遍历
                if i + j < len(nums):  # 确保下一跳的位置不超过数组范围
                    result[i + j] = min(result[i + j], result[i] + 1)  # 更新到达下一跳位置的最少步数

        return result[-1]  # 返回到达最后一个位置的最少步数

时间复杂度:O(n)

空间复杂度:O(n)

相关推荐
_小苔藓_1 分钟前
初探动态规划--记忆化搜索
深度优先·动态规划·代理模式
01_31 分钟前
力扣hot100 ——搜索二维矩阵 || m+n复杂度优化解法
算法·leetcode·矩阵
SylviaW0834 分钟前
python-leetcode 35.二叉树的中序遍历
算法·leetcode·职场和发展
篮l球场35 分钟前
LeetCodehot 力扣热题100
算法·leetcode·职场和发展
qy发大财1 小时前
分发糖果(力扣135)
数据结构·算法·leetcode
007_rbq4 小时前
XUnity.AutoTranslator-Gemini——调用Google的Gemini API, 实现Unity游戏中日文文本的自动翻译
人工智能·python·游戏·机器学习·unity·github·机器翻译
小王努力学编程4 小时前
【算法与数据结构】单调队列
数据结构·c++·学习·算法·leetcode
Sui_Network5 小时前
Sui 如何支持各种类型的 Web3 游戏
大数据·数据库·人工智能·游戏·web3·区块链
维齐洛波奇特利(male)5 小时前
(动态规划 完全背包 **)leetcode279完全平方数
算法·动态规划
晴空了无痕6 小时前
游戏客户端架构设计与实战:从模块化到性能优化
游戏·性能优化