在 Google Cloud 上轻松部署开放大语言模型

今天,我们想向大家宣布:"在 Google Cloud 上部署"功能正式上线!

这是 Hugging Face Hub 上的一个新功能,让开发者可以轻松地将数千个基础模型使用 Vertex AI 或 Google Kubernetes Engine (GKE) 部署到 Google Cloud。

Model Garden (模型库) 是 Google Cloud Vertex AI 平台的一个工具,用户能够发现、定制和部署来自 Google 及其合作伙伴的各种模型。不论是在 Hugging Face 模型页面还是在 Vertex AI 模型库页面,开发者们都可以轻松简单地将开放模型作为 API 端点部署在自己的 Google Cloud 账户内。我们也将启用 Hugging Face 上最受欢迎的开放模型进行推理,这一切都得益于我们的生产级解决方案 文本生成推理

借助"在 Google Cloud 上部署",开发者可以在自己的安全 Google Cloud 环境中直接构建准备就绪的生成式 AI 应用,无需自行管理基础设施和服务器。

为 AI 开发者构建

这一全新的体验是基于我们今年早些时候宣布的 战略合作关系 进一步扩展的,目的是简化 Google 客户访问和部署开放生成式 AI 模型的过程。开发者和机构面临的一个主要挑战是,部署模型需要投入大量时间和资源,且必须确保部署的安全性和可靠性。

"在 Google Cloud 上部署"提供了一个简单且管理化的解决方案,专为 Hugging Face 模型提供了专门的配置和资源。只需简单点击几下,就可以在 Google Cloud 的 Vertex AI 上创建一个准备就绪的端点。

Google 产品经理 Wenming Ye 表示:"Vertex AI 的 Model Garden 与 Hugging Face Hub 的集成,让在 Vertex AI 和 GKE 上发现和部署开放模型变得无缝衔接,无论您是从 Hub 开始,还是直接在 Google Cloud 控制台中。我们迫不及待想看到 Google 开发者们将会用 Hugging Face 模型创建出什么样的创新。"

从 HF Hub 开启模型部署

在 Google Cloud 上部署 Hugging Face 模型变得非常简单。以下是如何部署 Zephyr Gemma 的步骤指导。从今天开始,所有带有 text-generation-inference 标签的模型都将受到支持。

只需打开"部署"菜单,选择"Google Cloud"即可。这将直接带您进入 Google Cloud 控制台,您可以在 Vertex AI 或 GKE 上轻松一键部署 Zephyr Gemma。

进入 Vertex AI 模型库之后,您可以选择 Vertex AI 或 GKE 作为部署环境。如果选择 Vertex AI,您可以通过点击"部署"一键完成部署过程。如果选择 GKE,您可以根据提供的指南和模板,在新建或现有的 Kubernetes 集群上部署模型。

从 Vertex AI 模型库开启模型部署

Vertex AI 模型库是 Google 开发者寻找可用于生成式 AI 项目的现成模型的理想场所。从今天开始,Vertex Model Garden 将提供一种全新的体验,使开发者能够轻松部署 Hugging Face 上可用的最流行的开放大语言模型!

在 Google Vertex AI 模型库中,您会发现一个新的"从 Hugging Face 部署"选项,允许您直接在 Google Cloud 控制台内搜索并部署 Hugging Face 模型。

点击"从 Hugging Face 部署"后,将显示一个表单,您可以在其中快速查找模型 ID。Hugging Face 上数以百计最受欢迎的开放大语言模型已经准备就绪,提供了经过测试的硬件配置。

找到想要部署的模型后,选择该模型,Vertex AI 会自动填充所有必要的配置,以便您将模型部署到 Vertex AI 或 GKE 上。通过"在 Hugging Face 上查看"功能,您甚至可以确认选择的模型是否正确。如果您使用的是受限模型,请确保提供您的 Hugging Face 访问令牌,以授权下载模型。

就是这样!从 Vertex AI 模型库直接将模型如 Zephyr Gemma 部署到您的 Google Cloud 账户,只需简单几步。

这只是开始

我们很高兴能够与 Google Cloud 合作,让 AI 更加开放和易于访问。无论是从 Hugging Face Hub 开始,还是在 Google Cloud 控制台内,部署开放模型到 Google Cloud 上都变得前所未有的简单。但我们不会止步于此------敬请期待,我们将开启更多在 Google Cloud 上利用开放模型构建 AI 的新体验!

英文原文: hf.co/blog/google...

原文作者: Philipp Schmid & Jeff Boudier

相关推荐
知来者逆2 小时前
Binoculars——分析证实大语言模型生成文本的检测和引用量按学科和国家明确显示了使用偏差的多样性和对内容类型的影响
人工智能·深度学习·语言模型·自然语言处理·llm·大语言模型
几米哥9 小时前
如何构建高效的AI代理系统:LLM应用实践与最佳方案的深度解析
llm·aigc
测试者家园11 小时前
ChatGPT生成接口文档实践案例(二)
软件测试·chatgpt·llm·测试用例·测试图书·质量效能·用chatgpt做测试
bastgia3 天前
Tokenformer: 下一代Transformer架构
人工智能·机器学习·llm
新智元3 天前
李飞飞谢赛宁:多模态 LLM「空间大脑」觉醒,惊现世界模型雏形!
人工智能·llm
RWKV元始智能3 天前
RWKV-7:极先进的大模型架构,长文本能力极强
人工智能·llm
zaim14 天前
计算机的错误计算(一百八十七)
人工智能·ai·大模型·llm·错误·正弦/sin·误差/error
张拭心4 天前
Google 提供的 Android 端上大模型组件:MediaPipe LLM 介绍
android·人工智能·llm
带电的小王4 天前
whisper.cpp: Android端测试 -- Android端手机部署音频大模型
android·智能手机·llm·whisper·音频大模型·whisper.cpp
带电的小王4 天前
whisper.cpp: PC端测试 -- 电脑端部署音频大模型
llm·whisper·音视频·音频大模型