分类算法——sklearn转换器和估计器(一)

转换器(特征工程的父类)

  • 实例化(实例化的是一个转换器类(Transformer))
  • 调用fit_transform(对于文档建立分类词频矩阵,不能同时调用)

把特征工程的接口称之为转换器,其中转换器调用有这么几种形式:

标准化:(X- mean) / std

  • fit_transform( )
  • fit()------计算每一列的平均值、标准差
  • transform()------(X- mean) /std进行最终的转换
bash 复制代码
In [1] : from sklearn.preprocessing import StandardScaler
In [2] : std1=StandardScaler()
In [3] : a=[[1,2,3],[4,5,6]]
In [4] : std1.ft_transform( a)
out [4] :
array ([[-1.,-1.,-1.],
	   [1.,1.,1.]])
	   
In [5] : std2=StandardScaler()
In [6] : std2.fit(a)
out[6] : StandardScaler(copy=True,with_mean=True,with_std=True)

In [7] : std2.transform(a)
out[7] :
array([[-1.,-1.,-1.],
	  [1.,1.,1.]])

从中可以看出,fit_transform的作用相当于transform加上fit。

bash 复制代码
In [8] : b=[[7,8,9],[10,11,12]]
In [9] : std2.transform(b)
out [9] :
array([[3.,3.,3.],
	  [5., 5.,5.]])
	  
In [10] : std2.fit_transform(b)
out [10] :
array([[-1.,-1.,-1.],
	  [1.,1.,1.]])

估计器(sklearn机器学习算法的实现)

在sklearn中,估计器(estimator)是一个重要的角色,是一类实现了算法的API

  • 1用于分类的估计器:
    • sklearn.neighbors k-近邻算法
    • sklearn.naive_bayes 贝叶斯
    • sklearn.linear_model.LogisticRegression 逻辑回归
    • sklearn.tree 决策树与随机森林
  • 2用于回归的估计器:
    • sklearn.linear_model.LinearRegression 线性回归
    • sklearn.linear_model.Ridge 岭回归
  • 3用于无监督学习的估计器:
    • sklearn.cluster.KMeans 聚类

估计器工作流程

  • 实例化一个estimator
  • estimator.fit(x train, y train) 计算
    一调用完毕,模型生成
  • 3模型评估:
    • ①直接比对真实值和预测值
      y_predict = estimator. predict(x_test)
      y_test == y_predict
    • ②计算准确率
      accuracy = estimator.score(x_test, y_test)
相关推荐
wh_xia_jun13 小时前
基础分类模型及回归简介(一)
分类·数据挖掘·回归
ClouGence21 小时前
CloudCanal + Apache Paimon + StarRocks 实时构建湖仓一体架构
后端·数据挖掘·数据分析
SickeyLee21 小时前
对比分析:给数据找个 “参照物”,让孤立数字变 “决策依据”
信息可视化·数据挖掘·数据分析
李昊哲小课1 天前
K近邻算法的分类与回归应用场景
python·机器学习·分类·数据挖掘·回归·近邻算法·sklearn
Blossom.1181 天前
深度学习中的注意力机制:原理、应用与实践
人工智能·深度学习·神经网络·机器学习·生成对抗网络·计算机视觉·sklearn
摸鱼仙人~2 天前
现代人工智能综合分类:大模型时代的架构、模态与生态系统
人工智能·分类·数据挖掘
麻雀无能为力2 天前
CAU数据挖掘第四章 分类问题
人工智能·分类·数据挖掘·中国农业大学计算机
lucky_lyovo2 天前
卷积神经网络-卷积的分类
深度学习·分类·cnn
Blossom.1182 天前
基于深度学习的情感分析模型:从文本数据到模型部署
人工智能·深度学习·神经网络·学习·机器学习·prompt·sklearn
weixin_464078072 天前
机器学习sklearn入门:使用KNN模型分类鸢尾花和使用交叉验证进行简单调参
机器学习·分类·sklearn