分类算法——sklearn转换器和估计器(一)

转换器(特征工程的父类)

  • 实例化(实例化的是一个转换器类(Transformer))
  • 调用fit_transform(对于文档建立分类词频矩阵,不能同时调用)

把特征工程的接口称之为转换器,其中转换器调用有这么几种形式:

标准化:(X- mean) / std

  • fit_transform( )
  • fit()------计算每一列的平均值、标准差
  • transform()------(X- mean) /std进行最终的转换
bash 复制代码
In [1] : from sklearn.preprocessing import StandardScaler
In [2] : std1=StandardScaler()
In [3] : a=[[1,2,3],[4,5,6]]
In [4] : std1.ft_transform( a)
out [4] :
array ([[-1.,-1.,-1.],
	   [1.,1.,1.]])
	   
In [5] : std2=StandardScaler()
In [6] : std2.fit(a)
out[6] : StandardScaler(copy=True,with_mean=True,with_std=True)

In [7] : std2.transform(a)
out[7] :
array([[-1.,-1.,-1.],
	  [1.,1.,1.]])

从中可以看出,fit_transform的作用相当于transform加上fit。

bash 复制代码
In [8] : b=[[7,8,9],[10,11,12]]
In [9] : std2.transform(b)
out [9] :
array([[3.,3.,3.],
	  [5., 5.,5.]])
	  
In [10] : std2.fit_transform(b)
out [10] :
array([[-1.,-1.,-1.],
	  [1.,1.,1.]])

估计器(sklearn机器学习算法的实现)

在sklearn中,估计器(estimator)是一个重要的角色,是一类实现了算法的API

  • 1用于分类的估计器:
    • sklearn.neighbors k-近邻算法
    • sklearn.naive_bayes 贝叶斯
    • sklearn.linear_model.LogisticRegression 逻辑回归
    • sklearn.tree 决策树与随机森林
  • 2用于回归的估计器:
    • sklearn.linear_model.LinearRegression 线性回归
    • sklearn.linear_model.Ridge 岭回归
  • 3用于无监督学习的估计器:
    • sklearn.cluster.KMeans 聚类

估计器工作流程

  • 实例化一个estimator
  • estimator.fit(x train, y train) 计算
    一调用完毕,模型生成
  • 3模型评估:
    • ①直接比对真实值和预测值
      y_predict = estimator. predict(x_test)
      y_test == y_predict
    • ②计算准确率
      accuracy = estimator.score(x_test, y_test)
相关推荐
封步宇AIGC33 分钟前
量化交易系统开发-实时行情自动化交易-3.4.1.2.A股交易数据
人工智能·python·机器学习·数据挖掘
m0_5236742135 分钟前
技术前沿:从强化学习到Prompt Engineering,业务流程管理的创新之路
人工智能·深度学习·目标检测·机器学习·语言模型·自然语言处理·数据挖掘
封步宇AIGC2 小时前
量化交易系统开发-实时行情自动化交易-3.4.1.6.A股宏观经济数据
人工智能·python·机器学习·数据挖掘
小馒头学python14 小时前
【机器学习】突破分类瓶颈:用逻辑回归与Softmax回归解锁多分类世界
人工智能·python·算法·机器学习·分类·回归·逻辑回归
love_and_hope19 小时前
Pytorch学习--神经网络--利用GPU训练
人工智能·pytorch·python·神经网络·学习·数据挖掘
想七想八不如1140819 小时前
【数据分析与数据挖掘】决策树算法
算法·数据挖掘·数据分析
灰哥数据智能1 天前
DB-GPT系列(四):DB-GPT六大基础应用场景part1
python·数据挖掘·gpt-3·文心一言
pen-ai1 天前
【数据科学】1. 假设检验
人工智能·算法·机器学习·数据挖掘·数据分析
天蓝蓝235281 天前
机器学习中的分类:决策树、随机森林及其应用
决策树·机器学习·分类
sp_fyf_20241 天前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-03
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘