分类算法——sklearn转换器和估计器(一)

转换器(特征工程的父类)

  • 实例化(实例化的是一个转换器类(Transformer))
  • 调用fit_transform(对于文档建立分类词频矩阵,不能同时调用)

把特征工程的接口称之为转换器,其中转换器调用有这么几种形式:

标准化:(X- mean) / std

  • fit_transform( )
  • fit()------计算每一列的平均值、标准差
  • transform()------(X- mean) /std进行最终的转换
bash 复制代码
In [1] : from sklearn.preprocessing import StandardScaler
In [2] : std1=StandardScaler()
In [3] : a=[[1,2,3],[4,5,6]]
In [4] : std1.ft_transform( a)
out [4] :
array ([[-1.,-1.,-1.],
	   [1.,1.,1.]])
	   
In [5] : std2=StandardScaler()
In [6] : std2.fit(a)
out[6] : StandardScaler(copy=True,with_mean=True,with_std=True)

In [7] : std2.transform(a)
out[7] :
array([[-1.,-1.,-1.],
	  [1.,1.,1.]])

从中可以看出,fit_transform的作用相当于transform加上fit。

bash 复制代码
In [8] : b=[[7,8,9],[10,11,12]]
In [9] : std2.transform(b)
out [9] :
array([[3.,3.,3.],
	  [5., 5.,5.]])
	  
In [10] : std2.fit_transform(b)
out [10] :
array([[-1.,-1.,-1.],
	  [1.,1.,1.]])

估计器(sklearn机器学习算法的实现)

在sklearn中,估计器(estimator)是一个重要的角色,是一类实现了算法的API

  • 1用于分类的估计器:
    • sklearn.neighbors k-近邻算法
    • sklearn.naive_bayes 贝叶斯
    • sklearn.linear_model.LogisticRegression 逻辑回归
    • sklearn.tree 决策树与随机森林
  • 2用于回归的估计器:
    • sklearn.linear_model.LinearRegression 线性回归
    • sklearn.linear_model.Ridge 岭回归
  • 3用于无监督学习的估计器:
    • sklearn.cluster.KMeans 聚类

估计器工作流程

  • 实例化一个estimator
  • estimator.fit(x train, y train) 计算
    一调用完毕,模型生成
  • 3模型评估:
    • ①直接比对真实值和预测值
      y_predict = estimator. predict(x_test)
      y_test == y_predict
    • ②计算准确率
      accuracy = estimator.score(x_test, y_test)
相关推荐
Hcoco_me3 小时前
深度学习目标关联:常见深度学习匹配方法全面详解
人工智能·深度学习·分类·数据挖掘·自动驾驶
Hcoco_me8 小时前
目标追踪概述、分类
人工智能·深度学习·算法·机器学习·分类·数据挖掘·自动驾驶
babe小鑫9 小时前
大专应用统计学专业学习数据分析的实用性分析
学习·数据挖掘·数据分析
是小蟹呀^10 小时前
【论文阅读12】Circle Loss:一统 Softmax 与 Triplet,从“线性”到“圆形”的优化视角
深度学习·分类·circle loss
Faker66363aaa21 小时前
【深度学习】YOLO11-BiFPN多肉植物检测分类模型,从0到1实现植物识别系统,附完整代码与教程_1
人工智能·深度学习·分类
【赫兹威客】浩哥1 天前
无人机视角军事目标细分类检测数据集及多YOLO版本训练验证
yolo·分类·无人机
YangYang9YangYan1 天前
2026中专大数据与会计专业数据分析发展路径
大数据·数据挖掘·数据分析
YangYang9YangYan1 天前
2026大专大数据技术专业学数据分析指南
大数据·数据挖掘·数据分析
Christo31 天前
TSPL-2025《Centroid-Free K-Means With Balanced Clustering》
人工智能·算法·机器学习·数据挖掘·kmeans
AC赳赳老秦1 天前
虚拟化技术演进:DeepSeek适配轻量级虚拟机,实现AI工作负载高效管理
人工智能·python·架构·数据挖掘·自动化·数据库架构·deepseek