机器学习sklearn入门:使用KNN模型分类鸢尾花和使用交叉验证进行简单调参

bg:scikit--learn是不错的机器学习库,里面精简了很多东西,新手学习起来也是比较舒服的

python 复制代码
#%%
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier

iris = datasets.load_iris()
iris_X = iris.data
iris_y = iris.target     # 选择第0行和第一行
#%%
Xtrain, Xtest, Ytrain, Ytest = train_test_split(iris_X, iris_y, test_size=0.3)

knn = KNeighborsClassifier()
knn.fit(Xtrain, Ytrain)     # 将训练集的特征和标签训练knn模型
knn.predict(Xtest)      # 对测试集进行分类标签
#%%
Ytest       # 原本Xtest数据集对应的标签
#%%

结果:

测试集准确率:

5次交叉验证准确率:

还算是比较准的

调参

knn创建对象的时候是可以添加参数的,下面就以n_neighbors参数为例,挑选出最优的参数

python 复制代码
# 轮询找到更好的KNN参数
score_all = []
num_neighbors = np.arange(1, 10)
for num_neighbor in num_neighbors:
    knn = KNeighborsClassifier(n_neighbors=num_neighbor)
    score = cross_val_score(knn, Xtrain, Ytrain, cv=10, scoring='accuracy')
    score_all.append(score.mean())

思路就是遍历一遍

-- 通过matplotlib可以画出参数和准确率的关系

相关推荐
wm10434 小时前
机器学习第二讲 KNN算法
人工智能·算法·机器学习
Yeats_Liao7 小时前
MindSpore开发之路(二十四):MindSpore Hub:快速复用预训练模型
人工智能·分布式·神经网络·机器学习·个人开发
格林威8 小时前
传送带上运动模糊图像复原:提升动态成像清晰度的 6 个核心方案,附 OpenCV+Halcon 实战代码!
人工智能·opencv·机器学习·计算机视觉·ai·halcon·工业相机
Aurora-Borealis.9 小时前
Day27 机器学习流水线
人工智能·机器学习
黑符石11 小时前
【论文研读】Madgwick 姿态滤波算法报告总结
人工智能·算法·机器学习·imu·惯性动捕·madgwick·姿态滤波
JQLvopkk11 小时前
智能AI“学习功能”在程序开发部分的逻辑
人工智能·机器学习·计算机视觉
jiayong2311 小时前
model.onnx 深度分析报告(第2篇)
人工智能·机器学习·向量数据库·向量模型
张祥64228890412 小时前
数理统计基础一
人工智能·机器学习·概率论
悟乙己12 小时前
使用TimeGPT进行时间序列预测案例解析
机器学习·大模型·llm·时间序列·预测
云和数据.ChenGuang12 小时前
人工智能实践之基于CNN的街区餐饮图片识别案例实践
人工智能·深度学习·神经网络·机器学习·cnn