干货分享|TensorFlow构建神经网络

MNIST数据集前面章节已经多次遇到过,这里直接引用,并使用TensorFlow构建神经网络模型进行训练。下面举例说明如何构建简单的神经网络并训练。

【例15-33】 TensorFlow构建神经网络训练MNIST数据集。

输入如下代码:

# 构建简单模型,训练识别手写体数据集
import tensorflow as tf
# 导入数据
mnist = tf.keras.datasets.mnist
# 将样本从整数转换为浮点数
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# 将模型的各层堆叠起来,以搭建 tf.keras.Sequential 模型。为训练选择优化器和损失函数
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',
                 metrics=['accuracy'])
# 训练并验证模型
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test,  y_test, verbose=2)

运行结果如下:

Epoch 1/5
1875/1875 [==============================] - 9s 3ms/step - loss: 0.2945 - accuracy: 0.9141
Epoch 2/5
1875/1875 [==============================] - 5s 3ms/step - loss: 0.1429 - accuracy: 0.9574
Epoch 3/5
1875/1875 [==============================] - 5s 3ms/step - loss: 0.1075 - accuracy: 0.9687
Epoch 4/5
1875/1875 [==============================] - 7s 4ms/step - loss: 0.0883 - accuracy: 0.9726
Epoch 5/5
1875/1875 [==============================] - 6s 3ms/step - loss: 0.0724 - accuracy: 0.9767
313/313 - 1s - loss: 0.0772 - accuracy: 0.9771 - 827ms/epoch - 3ms/step

观察运行结果,该网络训练的准确率已经达到了97.67%。该网络虽然简单,但是注释完整,包含神经网络的各个部分,各种复杂的网络都是在简单网络的基础上发展而来的,希望读者认真理解,多加训练。

本文节选自《细说机器学习:从理论到实践》,内容发布获得作者和出版社授权。

细说机器学习 从理论到实践------京东·

相关推荐
Luis Li 的猫猫2 小时前
深度学习中的知识蒸馏
人工智能·经验分享·深度学习·学习·算法
木觞清4 小时前
PyTorch与TensorFlow的对比:哪个框架更适合你的项目?
人工智能·pytorch·tensorflow
wyg_0311137 小时前
用deepseek学大模型04-模型可视化与数据可视化
人工智能·机器学习·信息可视化
陈敬雷-充电了么-CEO兼CTO8 小时前
DeepSeek核心算法解析:如何打造比肩ChatGPT的国产大模型
人工智能·神经网络·自然语言处理·chatgpt·大模型·aigc·deepseek
盼小辉丶8 小时前
TensorFlow深度学习实战(8)——卷积神经网络
深度学习·cnn·tensorflow
南风过闲庭9 小时前
人工智能泡沫效应
大数据·人工智能·科技·搜索引擎·百度·ai
我是一个对称矩阵9 小时前
YOLOv5-Seg 深度解析:与 YOLOv5 检测模型的区别
人工智能·yolo·目标跟踪
AomanHao9 小时前
图像质量评价指标-UCIQE-UIQM
图像处理·人工智能·计算机视觉·评价指标
MYT_flyflyfly9 小时前
计算机视觉-尺度不变区域
人工智能·计算机视觉
何小Ai同学9 小时前
Deepseek赚钱密码:小场景闭环如何让你快速盈利?
人工智能·架构·deepseek