干货分享|TensorFlow构建神经网络

MNIST数据集前面章节已经多次遇到过,这里直接引用,并使用TensorFlow构建神经网络模型进行训练。下面举例说明如何构建简单的神经网络并训练。

【例15-33】 TensorFlow构建神经网络训练MNIST数据集。

输入如下代码:

复制代码
# 构建简单模型,训练识别手写体数据集
import tensorflow as tf
# 导入数据
mnist = tf.keras.datasets.mnist
# 将样本从整数转换为浮点数
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# 将模型的各层堆叠起来,以搭建 tf.keras.Sequential 模型。为训练选择优化器和损失函数
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',
                 metrics=['accuracy'])
# 训练并验证模型
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test,  y_test, verbose=2)

运行结果如下:

复制代码
Epoch 1/5
1875/1875 [==============================] - 9s 3ms/step - loss: 0.2945 - accuracy: 0.9141
Epoch 2/5
1875/1875 [==============================] - 5s 3ms/step - loss: 0.1429 - accuracy: 0.9574
Epoch 3/5
1875/1875 [==============================] - 5s 3ms/step - loss: 0.1075 - accuracy: 0.9687
Epoch 4/5
1875/1875 [==============================] - 7s 4ms/step - loss: 0.0883 - accuracy: 0.9726
Epoch 5/5
1875/1875 [==============================] - 6s 3ms/step - loss: 0.0724 - accuracy: 0.9767
313/313 - 1s - loss: 0.0772 - accuracy: 0.9771 - 827ms/epoch - 3ms/step

观察运行结果,该网络训练的准确率已经达到了97.67%。该网络虽然简单,但是注释完整,包含神经网络的各个部分,各种复杂的网络都是在简单网络的基础上发展而来的,希望读者认真理解,多加训练。

本文节选自《细说机器学习:从理论到实践》,内容发布获得作者和出版社授权。

细说机器学习 从理论到实践------京东·

相关推荐
爱笑的眼睛1118 小时前
SQLAlchemy 核心 API 深度解析:超越 ORM 的数据库工具包
java·人工智能·python·ai
知白守黑V18 小时前
OWASP 2025 LLM 应用十大安全风险深度解析
人工智能·安全·ai agent·ai智能体·ai应用·ai安全·大模型安全
zhaodiandiandian18 小时前
生成式AI重构内容创作生态:人机协同成核心竞争力
大数据·人工智能·重构
努力毕业的小土博^_^18 小时前
【AI课程领学】基于SmolVLM2与Qwen3的多模态模型拼接实践:从零构建视觉语言模型(一)
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理
Lululaurel18 小时前
AI编程提示词工程实战指南:从入门到精通
人工智能·python·机器学习·ai·ai编程
财经三剑客19 小时前
东风集团股份:11月生产量达21.6万辆 销量19.6万辆
大数据·人工智能·汽车
老蒋新思维19 小时前
创客匠人峰会新解:高势能 IP 打造 ——AI 时代知识变现的十倍增长密码
大数据·网络·人工智能·tcp/ip·创始人ip·创客匠人·知识变现
Dev7z19 小时前
基于神经网络的风电机组齿轮箱故障诊断研究与设计
人工智能·深度学习·神经网络
老蒋新思维19 小时前
创客匠人峰会洞察:AI 时代教育知识变现的重构 —— 从 “刷题记忆” 到 “成长赋能” 的革命
大数据·人工智能·网络协议·tcp/ip·重构·创始人ip·创客匠人
飞鹰@四海19 小时前
AutoGLM 旧安卓一键变 AI 手机:安装与使用指南
android·人工智能·智能手机