干货分享|TensorFlow构建神经网络

MNIST数据集前面章节已经多次遇到过,这里直接引用,并使用TensorFlow构建神经网络模型进行训练。下面举例说明如何构建简单的神经网络并训练。

【例15-33】 TensorFlow构建神经网络训练MNIST数据集。

输入如下代码:

# 构建简单模型,训练识别手写体数据集
import tensorflow as tf
# 导入数据
mnist = tf.keras.datasets.mnist
# 将样本从整数转换为浮点数
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# 将模型的各层堆叠起来,以搭建 tf.keras.Sequential 模型。为训练选择优化器和损失函数
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',
                 metrics=['accuracy'])
# 训练并验证模型
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test,  y_test, verbose=2)

运行结果如下:

Epoch 1/5
1875/1875 [==============================] - 9s 3ms/step - loss: 0.2945 - accuracy: 0.9141
Epoch 2/5
1875/1875 [==============================] - 5s 3ms/step - loss: 0.1429 - accuracy: 0.9574
Epoch 3/5
1875/1875 [==============================] - 5s 3ms/step - loss: 0.1075 - accuracy: 0.9687
Epoch 4/5
1875/1875 [==============================] - 7s 4ms/step - loss: 0.0883 - accuracy: 0.9726
Epoch 5/5
1875/1875 [==============================] - 6s 3ms/step - loss: 0.0724 - accuracy: 0.9767
313/313 - 1s - loss: 0.0772 - accuracy: 0.9771 - 827ms/epoch - 3ms/step

观察运行结果,该网络训练的准确率已经达到了97.67%。该网络虽然简单,但是注释完整,包含神经网络的各个部分,各种复杂的网络都是在简单网络的基础上发展而来的,希望读者认真理解,多加训练。

本文节选自《细说机器学习:从理论到实践》,内容发布获得作者和出版社授权。

细说机器学习 从理论到实践------京东·

相关推荐
小黄人软件11 分钟前
【AI协作】让所有用电脑的场景都能在ChatGPT里完成。Canvas :新一代可视化交互,让AI易用易得
人工智能·chatgpt·canvas
知来者逆23 分钟前
基于集成Whisper 与 Pepper-GPT改进人机交互体验并实现顺畅通信
人工智能·gpt·语言模型·自然语言处理·whisper·人机交互
摆烂仙君26 分钟前
《Probing the 3D Awareness of Visual Foundation Models》论文解析——单图像表面重建
人工智能·深度学习·计算机视觉
摆烂仙君28 分钟前
《Probing the 3D Awareness of Visual Foundation Models》论文解析——多视图一致性
人工智能·深度学习
Elastic 中国社区官方博客1 小时前
Elasticsearch retrievers 通常与 Elasticsearch 8.16.0 一起正式发布!
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
LKID体1 小时前
ChatGPT提问prompt范例模板
人工智能·chatgpt·prompt
MinIO官方账号2 小时前
使用 Prompt API 与您的对象聊天
人工智能
爱喝矿泉水的猛男2 小时前
Prompt设计技巧和高级PE
java·人工智能·prompt·cot·tot·pe·ape
埃菲尔铁塔_CV算法3 小时前
深度学习神经网络在机器人领域应用的深度剖析:原理、实践与前沿探索
深度学习·神经网络·机器人