干货分享|TensorFlow构建神经网络

MNIST数据集前面章节已经多次遇到过,这里直接引用,并使用TensorFlow构建神经网络模型进行训练。下面举例说明如何构建简单的神经网络并训练。

【例15-33】 TensorFlow构建神经网络训练MNIST数据集。

输入如下代码:

复制代码
# 构建简单模型,训练识别手写体数据集
import tensorflow as tf
# 导入数据
mnist = tf.keras.datasets.mnist
# 将样本从整数转换为浮点数
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# 将模型的各层堆叠起来,以搭建 tf.keras.Sequential 模型。为训练选择优化器和损失函数
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',
                 metrics=['accuracy'])
# 训练并验证模型
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test,  y_test, verbose=2)

运行结果如下:

复制代码
Epoch 1/5
1875/1875 [==============================] - 9s 3ms/step - loss: 0.2945 - accuracy: 0.9141
Epoch 2/5
1875/1875 [==============================] - 5s 3ms/step - loss: 0.1429 - accuracy: 0.9574
Epoch 3/5
1875/1875 [==============================] - 5s 3ms/step - loss: 0.1075 - accuracy: 0.9687
Epoch 4/5
1875/1875 [==============================] - 7s 4ms/step - loss: 0.0883 - accuracy: 0.9726
Epoch 5/5
1875/1875 [==============================] - 6s 3ms/step - loss: 0.0724 - accuracy: 0.9767
313/313 - 1s - loss: 0.0772 - accuracy: 0.9771 - 827ms/epoch - 3ms/step

观察运行结果,该网络训练的准确率已经达到了97.67%。该网络虽然简单,但是注释完整,包含神经网络的各个部分,各种复杂的网络都是在简单网络的基础上发展而来的,希望读者认真理解,多加训练。

本文节选自《细说机器学习:从理论到实践》,内容发布获得作者和出版社授权。

细说机器学习 从理论到实践------京东·

相关推荐
杭州泽沃电子科技有限公司2 小时前
为电气风险定价:如何利用监测数据评估工厂的“电气安全风险指数”?
人工智能·安全
Godspeed Zhao4 小时前
自动驾驶中的传感器技术24.3——Camera(18)
人工智能·机器学习·自动驾驶
顾北125 小时前
MCP协议实战|Spring AI + 高德地图工具集成教程
人工智能
wfeqhfxz25887825 小时前
毒蝇伞品种识别与分类_Centernet模型优化实战
人工智能·分类·数据挖掘
中杯可乐多加冰6 小时前
RAG 深度实践系列(七):从“能用”到“好用”——RAG 系统优化与效果评估
人工智能·大模型·llm·大语言模型·rag·检索增强生成
珠海西格电力科技6 小时前
微电网系统架构设计:并网/孤岛双模式运行与控制策略
网络·人工智能·物联网·系统架构·云计算·智慧城市
FreeBuf_6 小时前
AI扩大攻击面,大国博弈引发安全新挑战
人工智能·安全·chatgpt
weisian1517 小时前
进阶篇-8-数学篇-7--特征值与特征向量:AI特征提取的核心逻辑
人工智能·pca·特征值·特征向量·降维
Java程序员 拥抱ai7 小时前
撰写「从0到1构建下一代游戏AI客服」系列技术博客的初衷
人工智能
186******205317 小时前
AI重构项目开发全流程:效率革命与实践指南
人工智能·重构