干货分享|TensorFlow构建神经网络

MNIST数据集前面章节已经多次遇到过,这里直接引用,并使用TensorFlow构建神经网络模型进行训练。下面举例说明如何构建简单的神经网络并训练。

【例15-33】 TensorFlow构建神经网络训练MNIST数据集。

输入如下代码:

复制代码
# 构建简单模型,训练识别手写体数据集
import tensorflow as tf
# 导入数据
mnist = tf.keras.datasets.mnist
# 将样本从整数转换为浮点数
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# 将模型的各层堆叠起来,以搭建 tf.keras.Sequential 模型。为训练选择优化器和损失函数
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',
                 metrics=['accuracy'])
# 训练并验证模型
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test,  y_test, verbose=2)

运行结果如下:

复制代码
Epoch 1/5
1875/1875 [==============================] - 9s 3ms/step - loss: 0.2945 - accuracy: 0.9141
Epoch 2/5
1875/1875 [==============================] - 5s 3ms/step - loss: 0.1429 - accuracy: 0.9574
Epoch 3/5
1875/1875 [==============================] - 5s 3ms/step - loss: 0.1075 - accuracy: 0.9687
Epoch 4/5
1875/1875 [==============================] - 7s 4ms/step - loss: 0.0883 - accuracy: 0.9726
Epoch 5/5
1875/1875 [==============================] - 6s 3ms/step - loss: 0.0724 - accuracy: 0.9767
313/313 - 1s - loss: 0.0772 - accuracy: 0.9771 - 827ms/epoch - 3ms/step

观察运行结果,该网络训练的准确率已经达到了97.67%。该网络虽然简单,但是注释完整,包含神经网络的各个部分,各种复杂的网络都是在简单网络的基础上发展而来的,希望读者认真理解,多加训练。

本文节选自《细说机器学习:从理论到实践》,内容发布获得作者和出版社授权。

细说机器学习 从理论到实践------京东·

相关推荐
机器之心1 分钟前
好莱坞特效师展示AI生成的中文科幻大片,成本只有330元
人工智能·openai
Codebee11 分钟前
用原生AI-IDE快速搞定OneCode视图注解:AI与注解驱动开发的完美结合
人工智能·低代码
aneasystone本尊12 分钟前
GraphRAG 快速入门
人工智能
用户51914958484515 分钟前
TypeScript Record类型完全指南:从基础到高级应用
人工智能·aigc
听风.82521 分钟前
机器学习6
人工智能·机器学习·概率论
钢铁男儿30 分钟前
使用 TensorBoardX 实现 PyTorch 神经网络可视化:从入门到进阶
人工智能·pytorch·神经网络
苍何34 分钟前
DeepSeek V3.1正式发布,专为下代国产芯设计
人工智能
重启的码农35 分钟前
llama.cpp 分布式推理介绍(5) RPC 通信协议
c++·人工智能·神经网络
Gloria_niki38 分钟前
机器学习之数据预处理学习总结
人工智能·学习·机器学习·数据分析
听风.82538 分钟前
机器学习2
人工智能·机器学习