【深度学习】pytorch计算KL散度、kl_div

使用pytorch进行KL散度计算,可以使用pytorch的kl_div函数

假设y为真实分布,x为预测分布。

java 复制代码
import torch
import torch.nn.functional as F

# 定义两组数据
tensor1 = torch.tensor([[0.1, 0.2, 0.3, 0.2, 0.2],
                        [0.2, 0.1, 0.2, 0.3, 0.2],
                        [0.2, 0.3, 0.1, 0.2, 0.2],
                        [0.2, 0.2, 0.3, 0.1, 0.2],
                        [0.2, 0.2, 0.2, 0.3, 0.1],
                        [0.1, 0.2, 0.2, 0.2, 0.3],
                        [0.3, 0.2, 0.1, 0.2, 0.2],
                        [0.2, 0.3, 0.2, 0.1, 0.2],
                        [0.1, 0.2, 0.2, 0.3, 0.2],
                        [0.2, 0.1, 0.3, 0.2, 0.2],
                        [0.2, 0.3, 0.2, 0.2, 0.1],
                        [0.1, 0.1, 0.2, 0.3, 0.3],
                        [0.3, 0.2, 0.2, 0.1, 0.2],
                        [0.2, 0.3, 0.1, 0.2, 0.2],
                        [0.1, 0.3, 0.2, 0.2, 0.2],
                        [0.2, 0.2, 0.1, 0.3, 0.2]])

tensor2 = torch.tensor([[0.2, 0.1, 0.3, 0.2, 0.2],
                        [0.3, 0.2, 0.2, 0.1, 0.2],
                        [0.2, 0.3, 0.2, 0.2, 0.1],
                        [0.1, 0.2, 0.3, 0.2, 0.2],
                        [0.2, 0.2, 0.1, 0.2, 0.3],
                        [0.3, 0.2, 0.2, 0.3, 0.0],
                        [0.2, 0.3, 0.1, 0.2, 0.2],
                        [0.1, 0.2, 0.2, 0.3, 0.2],
                        [0.2, 0.1, 0.3, 0.2, 0.2],
                        [0.2, 0.3, 0.2, 0.1, 0.2],
                        [0.1, 0.2, 0.3, 0.2, 0.2],
                        [0.2, 0.3, 0.2, 0.2, 0.1],
                        [0.2, 0.1, 0.2, 0.3, 0.2],
                        [0.3, 0.2, 0.2, 0.1, 0.2],
                        [0.2, 0.2, 0.3, 0.2, 0.1],
                        [0.1, 0.3, 0.2, 0.2, 0.2]])

# 计算两组张量之间的 KL 散度
logp_x = F.log_softmax(tensor1, dim=-1)
p_y = F.softmax(tensor2, dim=-1)

kl_divergence = F.kl_div(logp_x, p_y, reduction='batchmean')
kl_sum = F.kl_div(logp_x, p_y, reduction='sum')
print("KL散度(batchmean)值为:", kl_divergence.item())
print("KL散度(sum)值为:", kl_sum.item())

打印结果:

复制代码
KL散度(batchmean)值为: 0.00508523266762495
KL散度(sum)值为: 0.0813637226819992  

其中kl_div接收三个参数,第一个为预测分布,第二个为真实分布,第三个为reduction。(其实还有其他参数,只是基本用不到)

这里有一些细节需要注意,第一个参数与第二个参数都要进行softmax(dim=-1),目的是使两个概率分布的所有值之和都为1,若不进行此操作,如果x或y概率分布所有值的和大于1,则可能会使计算的KL为负数。

softmax接收一个参数dim,dim=-1表示在最后一维进行softmax操作。

除此之外,第一个参数还要进行log()操作(至于为什么,大概是为了方便pytorch的代码组织,pytorch定义的损失函数都调用handle_torch_function函数,方便权重控制等),才能得到正确结果。还有说是因为要用y指导x,所以求x的对数概率,y的概率

相关推荐
掘金安东尼2 分钟前
Google+禁用“一次性抓取100条搜索结果”,SEO迎来变革?
人工智能
FIN66688 分钟前
射频技术领域的领航者,昂瑞微IPO即将上会审议
前端·人工智能·前端框架·信息与通信
小麦矩阵系统永久免费19 分钟前
短视频矩阵系统哪个好用?2025最新评测与推荐|小麦矩阵系统
大数据·人工智能·矩阵
Mr.Lee jack21 分钟前
【vLLM】源码解读:高性能大语言模型推理引擎的工程设计与实现
人工智能·语言模型·自然语言处理
IT_陈寒28 分钟前
Java性能优化:这5个Spring Boot隐藏技巧让你的应用提速40%
前端·人工智能·后端
MicroTech202537 分钟前
微算法科技(NASDAQ:MLGO)开发延迟和隐私感知卷积神经网络分布式推理,助力可靠人工智能系统技术
人工智能·科技·算法
喜欢吃豆43 分钟前
多轮智能对话系统架构方案(可实战):从基础模型到自我优化的对话智能体,数据飞轮的重要性
人工智能·语言模型·自然语言处理·系统架构·大模型·多轮智能对话系统
文火冰糖的硅基工坊1 小时前
[嵌入式系统-83]:算力芯片的类型与主流架构
人工智能·重构·架构
视觉语言导航3 小时前
ICRA-2025 | 阿德莱德机器人拓扑导航探索!TANGO:具有局部度量控制的拓扑目标可穿越性感知具身导航
人工智能·机器人·具身智能
西猫雷婶7 小时前
CNN卷积计算
人工智能·神经网络·cnn