【深度学习】pytorch计算KL散度、kl_div

使用pytorch进行KL散度计算,可以使用pytorch的kl_div函数

假设y为真实分布,x为预测分布。

java 复制代码
import torch
import torch.nn.functional as F

# 定义两组数据
tensor1 = torch.tensor([[0.1, 0.2, 0.3, 0.2, 0.2],
                        [0.2, 0.1, 0.2, 0.3, 0.2],
                        [0.2, 0.3, 0.1, 0.2, 0.2],
                        [0.2, 0.2, 0.3, 0.1, 0.2],
                        [0.2, 0.2, 0.2, 0.3, 0.1],
                        [0.1, 0.2, 0.2, 0.2, 0.3],
                        [0.3, 0.2, 0.1, 0.2, 0.2],
                        [0.2, 0.3, 0.2, 0.1, 0.2],
                        [0.1, 0.2, 0.2, 0.3, 0.2],
                        [0.2, 0.1, 0.3, 0.2, 0.2],
                        [0.2, 0.3, 0.2, 0.2, 0.1],
                        [0.1, 0.1, 0.2, 0.3, 0.3],
                        [0.3, 0.2, 0.2, 0.1, 0.2],
                        [0.2, 0.3, 0.1, 0.2, 0.2],
                        [0.1, 0.3, 0.2, 0.2, 0.2],
                        [0.2, 0.2, 0.1, 0.3, 0.2]])

tensor2 = torch.tensor([[0.2, 0.1, 0.3, 0.2, 0.2],
                        [0.3, 0.2, 0.2, 0.1, 0.2],
                        [0.2, 0.3, 0.2, 0.2, 0.1],
                        [0.1, 0.2, 0.3, 0.2, 0.2],
                        [0.2, 0.2, 0.1, 0.2, 0.3],
                        [0.3, 0.2, 0.2, 0.3, 0.0],
                        [0.2, 0.3, 0.1, 0.2, 0.2],
                        [0.1, 0.2, 0.2, 0.3, 0.2],
                        [0.2, 0.1, 0.3, 0.2, 0.2],
                        [0.2, 0.3, 0.2, 0.1, 0.2],
                        [0.1, 0.2, 0.3, 0.2, 0.2],
                        [0.2, 0.3, 0.2, 0.2, 0.1],
                        [0.2, 0.1, 0.2, 0.3, 0.2],
                        [0.3, 0.2, 0.2, 0.1, 0.2],
                        [0.2, 0.2, 0.3, 0.2, 0.1],
                        [0.1, 0.3, 0.2, 0.2, 0.2]])

# 计算两组张量之间的 KL 散度
logp_x = F.log_softmax(tensor1, dim=-1)
p_y = F.softmax(tensor2, dim=-1)

kl_divergence = F.kl_div(logp_x, p_y, reduction='batchmean')
kl_sum = F.kl_div(logp_x, p_y, reduction='sum')
print("KL散度(batchmean)值为:", kl_divergence.item())
print("KL散度(sum)值为:", kl_sum.item())

打印结果:

复制代码
KL散度(batchmean)值为: 0.00508523266762495
KL散度(sum)值为: 0.0813637226819992  

其中kl_div接收三个参数,第一个为预测分布,第二个为真实分布,第三个为reduction。(其实还有其他参数,只是基本用不到)

这里有一些细节需要注意,第一个参数与第二个参数都要进行softmax(dim=-1),目的是使两个概率分布的所有值之和都为1,若不进行此操作,如果x或y概率分布所有值的和大于1,则可能会使计算的KL为负数。

softmax接收一个参数dim,dim=-1表示在最后一维进行softmax操作。

除此之外,第一个参数还要进行log()操作(至于为什么,大概是为了方便pytorch的代码组织,pytorch定义的损失函数都调用handle_torch_function函数,方便权重控制等),才能得到正确结果。还有说是因为要用y指导x,所以求x的对数概率,y的概率

相关推荐
无心水5 分钟前
【Stable Diffusion 3.5 FP8】8、生产级保障:Stable Diffusion 3.5 FP8 伦理安全与问题排查
人工智能·python·安全·docker·stable diffusion·ai镜像开发·镜像实战开发
小程故事多_808 分钟前
开源封神!Minion Skills 重构 Claude Skills,解锁 AI Agent 无限能力
人工智能·重构·开源·aigc
minhuan11 分钟前
大模型应用:不减性能只减负担:大模型稀疏化技术全景与实践.36
大数据·人工智能·算法
qq_4308558823 分钟前
线代第三章向量第三节:向量组的秩
人工智能·机器学习
Saniffer_SH26 分钟前
【每日一题】笔记本电脑上从U盘拷贝文件到M.2 SSD过程中为什么链路还会偶尔进入L1.2低功耗?
服务器·网络·人工智能·驱动开发·单片机·嵌入式硬件·电脑
lusasky27 分钟前
AgentScope的主要开源竞品框架对比
人工智能·开源
高光视点27 分钟前
共话 AI Agent 规模化落地!快鹭科技受邀参与福田 “益企 LINK” 沙龙圆桌讨论
人工智能·科技
mys551827 分钟前
杨建允:AI搜索优化对全链路营销的影响
人工智能·aigc·geo·ai搜索优化·ai引擎优化
汤姆yu28 分钟前
基于深度学习的电动车头盔佩戴检测系统
人工智能·深度学习
木头左30 分钟前
强化学习结合LSTM的量化交易策略奖励函数与入参关联
人工智能·rnn·lstm