【深度学习】pytorch计算KL散度、kl_div

使用pytorch进行KL散度计算,可以使用pytorch的kl_div函数

假设y为真实分布,x为预测分布。

java 复制代码
import torch
import torch.nn.functional as F

# 定义两组数据
tensor1 = torch.tensor([[0.1, 0.2, 0.3, 0.2, 0.2],
                        [0.2, 0.1, 0.2, 0.3, 0.2],
                        [0.2, 0.3, 0.1, 0.2, 0.2],
                        [0.2, 0.2, 0.3, 0.1, 0.2],
                        [0.2, 0.2, 0.2, 0.3, 0.1],
                        [0.1, 0.2, 0.2, 0.2, 0.3],
                        [0.3, 0.2, 0.1, 0.2, 0.2],
                        [0.2, 0.3, 0.2, 0.1, 0.2],
                        [0.1, 0.2, 0.2, 0.3, 0.2],
                        [0.2, 0.1, 0.3, 0.2, 0.2],
                        [0.2, 0.3, 0.2, 0.2, 0.1],
                        [0.1, 0.1, 0.2, 0.3, 0.3],
                        [0.3, 0.2, 0.2, 0.1, 0.2],
                        [0.2, 0.3, 0.1, 0.2, 0.2],
                        [0.1, 0.3, 0.2, 0.2, 0.2],
                        [0.2, 0.2, 0.1, 0.3, 0.2]])

tensor2 = torch.tensor([[0.2, 0.1, 0.3, 0.2, 0.2],
                        [0.3, 0.2, 0.2, 0.1, 0.2],
                        [0.2, 0.3, 0.2, 0.2, 0.1],
                        [0.1, 0.2, 0.3, 0.2, 0.2],
                        [0.2, 0.2, 0.1, 0.2, 0.3],
                        [0.3, 0.2, 0.2, 0.3, 0.0],
                        [0.2, 0.3, 0.1, 0.2, 0.2],
                        [0.1, 0.2, 0.2, 0.3, 0.2],
                        [0.2, 0.1, 0.3, 0.2, 0.2],
                        [0.2, 0.3, 0.2, 0.1, 0.2],
                        [0.1, 0.2, 0.3, 0.2, 0.2],
                        [0.2, 0.3, 0.2, 0.2, 0.1],
                        [0.2, 0.1, 0.2, 0.3, 0.2],
                        [0.3, 0.2, 0.2, 0.1, 0.2],
                        [0.2, 0.2, 0.3, 0.2, 0.1],
                        [0.1, 0.3, 0.2, 0.2, 0.2]])

# 计算两组张量之间的 KL 散度
logp_x = F.log_softmax(tensor1, dim=-1)
p_y = F.softmax(tensor2, dim=-1)

kl_divergence = F.kl_div(logp_x, p_y, reduction='batchmean')
kl_sum = F.kl_div(logp_x, p_y, reduction='sum')
print("KL散度(batchmean)值为:", kl_divergence.item())
print("KL散度(sum)值为:", kl_sum.item())

打印结果:

复制代码
KL散度(batchmean)值为: 0.00508523266762495
KL散度(sum)值为: 0.0813637226819992  

其中kl_div接收三个参数,第一个为预测分布,第二个为真实分布,第三个为reduction。(其实还有其他参数,只是基本用不到)

这里有一些细节需要注意,第一个参数与第二个参数都要进行softmax(dim=-1),目的是使两个概率分布的所有值之和都为1,若不进行此操作,如果x或y概率分布所有值的和大于1,则可能会使计算的KL为负数。

softmax接收一个参数dim,dim=-1表示在最后一维进行softmax操作。

除此之外,第一个参数还要进行log()操作(至于为什么,大概是为了方便pytorch的代码组织,pytorch定义的损失函数都调用handle_torch_function函数,方便权重控制等),才能得到正确结果。还有说是因为要用y指导x,所以求x的对数概率,y的概率

相关推荐
王干脆2 分钟前
面向人机协同的AI Agent设计范式:理论框架与架构实践
人工智能·ai·架构
_codemonster3 分钟前
手语识别及翻译项目实战系列(五)整体架构代码详细代码实现
人工智能·python·计算机视觉·架构
橘子师兄10 分钟前
C++AI大模型接入SDK—deepseek接入封装
c++·人工智能·chatgpt
黄小耶@10 分钟前
基于 双向RNN网络 的中文文本预测模型
人工智能·rnn·深度学习
gdutxiaoxu14 分钟前
browser-use - 让AI Agent真正“会“用浏览器
人工智能·ai agent
Fairy要carry14 分钟前
面试-OnlyDecoder用于嵌入模型
人工智能
陈天伟教授20 分钟前
人工智能应用-机器视觉:AI 鉴伪 03.换脸伪造技术
人工智能·神经网络·生成对抗网络
Yeats_Liao23 分钟前
长文本优化:KV Cache机制与显存占用平衡策略
人工智能·深度学习·学习·机器学习·华为
石逸凡27 分钟前
基于实体地图的金融大模型落地方法探索与前景展望
人工智能·金融
cooldream200928 分钟前
辩核AI具身辩论数字人训练系统:技术架构与功能体系全解析
人工智能·架构·具身数字人