【深度学习】pytorch计算KL散度、kl_div

使用pytorch进行KL散度计算,可以使用pytorch的kl_div函数

假设y为真实分布,x为预测分布。

java 复制代码
import torch
import torch.nn.functional as F

# 定义两组数据
tensor1 = torch.tensor([[0.1, 0.2, 0.3, 0.2, 0.2],
                        [0.2, 0.1, 0.2, 0.3, 0.2],
                        [0.2, 0.3, 0.1, 0.2, 0.2],
                        [0.2, 0.2, 0.3, 0.1, 0.2],
                        [0.2, 0.2, 0.2, 0.3, 0.1],
                        [0.1, 0.2, 0.2, 0.2, 0.3],
                        [0.3, 0.2, 0.1, 0.2, 0.2],
                        [0.2, 0.3, 0.2, 0.1, 0.2],
                        [0.1, 0.2, 0.2, 0.3, 0.2],
                        [0.2, 0.1, 0.3, 0.2, 0.2],
                        [0.2, 0.3, 0.2, 0.2, 0.1],
                        [0.1, 0.1, 0.2, 0.3, 0.3],
                        [0.3, 0.2, 0.2, 0.1, 0.2],
                        [0.2, 0.3, 0.1, 0.2, 0.2],
                        [0.1, 0.3, 0.2, 0.2, 0.2],
                        [0.2, 0.2, 0.1, 0.3, 0.2]])

tensor2 = torch.tensor([[0.2, 0.1, 0.3, 0.2, 0.2],
                        [0.3, 0.2, 0.2, 0.1, 0.2],
                        [0.2, 0.3, 0.2, 0.2, 0.1],
                        [0.1, 0.2, 0.3, 0.2, 0.2],
                        [0.2, 0.2, 0.1, 0.2, 0.3],
                        [0.3, 0.2, 0.2, 0.3, 0.0],
                        [0.2, 0.3, 0.1, 0.2, 0.2],
                        [0.1, 0.2, 0.2, 0.3, 0.2],
                        [0.2, 0.1, 0.3, 0.2, 0.2],
                        [0.2, 0.3, 0.2, 0.1, 0.2],
                        [0.1, 0.2, 0.3, 0.2, 0.2],
                        [0.2, 0.3, 0.2, 0.2, 0.1],
                        [0.2, 0.1, 0.2, 0.3, 0.2],
                        [0.3, 0.2, 0.2, 0.1, 0.2],
                        [0.2, 0.2, 0.3, 0.2, 0.1],
                        [0.1, 0.3, 0.2, 0.2, 0.2]])

# 计算两组张量之间的 KL 散度
logp_x = F.log_softmax(tensor1, dim=-1)
p_y = F.softmax(tensor2, dim=-1)

kl_divergence = F.kl_div(logp_x, p_y, reduction='batchmean')
kl_sum = F.kl_div(logp_x, p_y, reduction='sum')
print("KL散度(batchmean)值为:", kl_divergence.item())
print("KL散度(sum)值为:", kl_sum.item())

打印结果:

复制代码
KL散度(batchmean)值为: 0.00508523266762495
KL散度(sum)值为: 0.0813637226819992  

其中kl_div接收三个参数,第一个为预测分布,第二个为真实分布,第三个为reduction。(其实还有其他参数,只是基本用不到)

这里有一些细节需要注意,第一个参数与第二个参数都要进行softmax(dim=-1),目的是使两个概率分布的所有值之和都为1,若不进行此操作,如果x或y概率分布所有值的和大于1,则可能会使计算的KL为负数。

softmax接收一个参数dim,dim=-1表示在最后一维进行softmax操作。

除此之外,第一个参数还要进行log()操作(至于为什么,大概是为了方便pytorch的代码组织,pytorch定义的损失函数都调用handle_torch_function函数,方便权重控制等),才能得到正确结果。还有说是因为要用y指导x,所以求x的对数概率,y的概率

相关推荐
lczdyx16 分钟前
【胶囊网络】01-2 胶囊网络发展历史与研究现状
人工智能·深度学习·机器学习·ai·大模型·反向传播
AomanHao20 分钟前
【ISP】基于暗通道先验改进的红外图像透雾
图像处理·人工智能·算法·计算机视觉·图像增强·红外图像
AI智能观察21 分钟前
从数据中心到服务大厅:数字人智能体如何革新电力行业服务模式
人工智能·数字人·智慧展厅·智能体·数字展厅
AI智能观察27 分钟前
生成式AI驱动信息分发变革:GEO跃迁方向、价值锚点与企业生存指南
人工智能·流量运营·geo·ai搜索·智能营销·geo工具·geo平台
苏渡苇35 分钟前
轻量化AI落地:Java + Spring Boot 实现设备异常预判
java·人工智能·spring boot·后端·网络协议·tcp/ip·spring
大熊背36 分钟前
APEX系统中为什么 不用与EV0的差值计算曝光参数调整量
人工智能·算法·apex·自动曝光
小雨中_39 分钟前
2.4 贝尔曼方程与蒙特卡洛方法
人工智能·python·深度学习·机器学习·自然语言处理
Chiang_Yuhsin42 分钟前
【程序人生-Hello‘s P2P】
人工智能
大闲在人1 小时前
传统软件工程在 AI 时代急需改进的四个核心维度
人工智能·软件工程
qyresearch_1 小时前
机动休闲艇产业:技术革新与消费升级驱动下的全球市场新格局
人工智能