基于opencv的视觉巡线实现

前言

这段时间在和学弟打软件杯的比赛,有项任务就是机器人的视觉巡线,这虽然不是什么稀奇的事情,但是对于一开始不了解视觉的我来说可以说是很懵了,所以现在就想着和大家分享一下,来看看是如何基于opencv来实现巡线的。我这里以ubuntu20.04为例了

正文

1.查看相机设备

首先要完成视觉巡线那必不可少的就是相机了,使用

复制代码
ll /dev/video*

来查看相机。

这里可以看到我有两个相机设备,一个是我电脑自带的相机video0,另一个是我的usb相机video1。

2.显示实时图像

新建一个工作空间,然后新建一个cpp文件,然后进行相机的初始化,以及调用窗口实时显示图像

复制代码
#include <opencv2/opencv.hpp>
#include <iostream>
#include <chrono>

using namespace std;

int camera_width = 640;
int camera_height = 480;

int main(int argc, char const *argv[])
{
    // 初始化变量和对象
    cv::VideoCapture cap(1);
    cap.set(CAP_PROP_FRAME_WIDTH, camera_width);
    cap.set(CAP_PROP_FRAME_HEIGHT, camera_height);
    // 循环处理每一帧图像
    while (true) {
        cv::Mat color_image;
        cap.read(color_image);
        if (color_image.empty()) {
            cerr << "Failed to capture image" << endl;
            break;
        }
     imshow("Color Image", color_image);
     char key = waitKey(1);
        if (key == 'q') {
            break;
        }
    }

    // 释放资源
    cap.release();
    destroyAllWindows();
    return 0;
}

这里初始化cv::VideoCapture cap(1)传入的参数就是上面查看到的设备,如果想要调用系统自带相机,那就改为cap(0)。

3.巡线函数

我这里函数声明如下:

复制代码
tuple<cv::Mat, float, bool, bool, bool> followBlindPath(cv::Mat color_image) 

由于我想要多个返回值所以就采用了tuple模版,后面采用tie函数进行解包,其中输入参数为要识别的图片,输出参数分别为经识别后标记的图片,以及水平方向上偏差(后面会具体解释是什么偏差),后面三个布尔值表示三个状态,分别为巡线,转弯和停止。

在识别开始之前,由于图片在opencv保存的格式默认为BGR格式图片,我们要转为HSV格式,因为后面的操作都是基于HSV图片进行的。

复制代码
cv::cvtColor(color_image, hsvFrame, COLOR_BGR2HSV);

效果如下:

然后指定HSV的色域,scalar函数三个参数分别为色调(Hue)、饱和度(Saturation)和亮度(Value),我这里设置的值为黄色的色域。

复制代码
cv::Scalar color_lower =  cv::Scalar(10, 40, 120);
cv::Scalar color_upper =  cv::Scalar(40, 255, 255);
cv::inRange(hsvFrame, color_lower, color_upper,color_mask);

inRange函数用于判断一个像素或像素矩阵是否在指定的范围内,hsvFrame是输入图像,返回图像color_mask是一个二值图像,即在色域内的为白色,色域外为黑色。

处理效果如下:

点击基于opencv的视觉巡线实现 - 古月居可查看全文

相关推荐
Shawn_Shawn1 天前
人工智能入门概念介绍
人工智能
极限实验室1 天前
程序员爆哭!我们让 COCO AI 接管 GitLab 审查后,团队直接起飞:连 CTO 都说“这玩意儿比人靠谱多了
人工智能·gitlab
Maynor9961 天前
Z-Image: 100% Free AI Image Generator
人工智能
爬点儿啥1 天前
[Ai Agent] 10 MCP基础:快速编写你自己的MCP服务器(Server)
人工智能·ai·langchain·agent·transport·mcp
张人玉1 天前
百度 AI 图像识别 WinForms 应用代码分析笔记
人工智能·笔记·百度
sali-tec1 天前
C# 基于halcon的视觉工作流-章68 深度学习-对象检测
开发语言·算法·计算机视觉·重构·c#
测试人社区-小明1 天前
智能弹性伸缩算法在测试环境中的实践与验证
人工智能·测试工具·算法·机器学习·金融·机器人·量子计算
Spring AI学习1 天前
Spring AI深度解析(9/50):可观测性与监控体系实战
java·人工智能·spring
罗西的思考1 天前
【Agent】MemOS 源码笔记---(5)---记忆分类
人工智能·深度学习·算法
dajun1811234561 天前
反 AI 生成技术兴起:如何识别与过滤海量的 AI 伪造内容?
人工智能