大模型之一:大语言模型预训练的过程

介绍

大语言模型的一般训练过程(3步):1、预训练学知识,2、指令微调学格式,3、强化学习对齐人类偏好

预训练

所以要想大模型有领域知识,得增量预训练(靠指令微调记知识不靠谱,不是几十w条数据能做到的)

1. 准备工作

准备基座模型->收集数据->数据清洗

2. 增量预训练所用训练框架

超大规模训练:选用 3D 并行,Megatron-Deepspeed拥有多个成功案例

少量节点训练:选用张量并行,但张量并行只有在 nvlink 环境下才会起正向作用,但提升也不会太明显。

少量卡训练:如果资源特别少,显存怎么也不够,可以使用 LoRA 进行增量预训练。

3. 增量预训练

先用大规模通用语料预训练,再用小规模领域语料二次训练

直接进行大规模领域语料预训练

通用语料比例混合领域语料同时训练

4. 流程

数据预处理:参考 LLaMA 的预训练长度,也把数据处理成2048长度(如果不够,做补全)。

分词器:如果使用 LLaMA 可能需要添加中文词表,目前有不少人做了相关工作,当然也可以自己添加自己需要的词表。

原始模型:各家框架的模型层名不太一样,训练时可能需要做一些调整,在预训练时尽量选择基座模型,不选 Chat 模型。

训练模型:跑通只是第一步,根据训练情况反复调整比较重要。

模型转换:不同框架的checkpoint格式不同,还会根据并行度分成很多个文件。

模型测试:简单测试下续写能力,验证下模型是否正常。

相关推荐
上天夭31 分钟前
模型训练篇
人工智能·深度学习·机器学习
小徐Chao努力37 分钟前
【Langchain4j-Java AI开发】09-Agent智能体工作流
java·开发语言·人工智能
Blossom.11842 分钟前
AI编译器实战:从零手写算子融合与自动调度系统
人工智能·python·深度学习·机器学习·flask·transformer·tornado
Coder_Boy_1 小时前
SpringAI与LangChain4j的智能应用-(理论篇2)
人工智能·spring boot·langchain·springai
却道天凉_好个秋1 小时前
OpenCV(四十八):图像查找
人工智能·opencv·计算机视觉
Coder_Boy_1 小时前
SpringAI与LangChain4j的智能应用-(理论篇3)
java·人工智能·spring boot·langchain
GetcharZp1 小时前
工地“火眼金睛”!手把手带你用 YOLO11 实现安全帽佩戴检测
人工智能·计算机视觉
Codebee1 小时前
Ooder A2UI架构白皮书
人工智能·响应式编程
Coder_Boy_1 小时前
基于SpringAI的智能平台基座开发-(六)
java·数据库·人工智能·spring·langchain·langchain4j
泰迪智能科技011 小时前
分享图书推荐 | 数字图像处理实战
人工智能·深度学习·计算机视觉