大模型之一:大语言模型预训练的过程

介绍

大语言模型的一般训练过程(3步):1、预训练学知识,2、指令微调学格式,3、强化学习对齐人类偏好

预训练

所以要想大模型有领域知识,得增量预训练(靠指令微调记知识不靠谱,不是几十w条数据能做到的)

1. 准备工作

准备基座模型->收集数据->数据清洗

2. 增量预训练所用训练框架

超大规模训练:选用 3D 并行,Megatron-Deepspeed拥有多个成功案例

少量节点训练:选用张量并行,但张量并行只有在 nvlink 环境下才会起正向作用,但提升也不会太明显。

少量卡训练:如果资源特别少,显存怎么也不够,可以使用 LoRA 进行增量预训练。

3. 增量预训练

先用大规模通用语料预训练,再用小规模领域语料二次训练

直接进行大规模领域语料预训练

通用语料比例混合领域语料同时训练

4. 流程

数据预处理:参考 LLaMA 的预训练长度,也把数据处理成2048长度(如果不够,做补全)。

分词器:如果使用 LLaMA 可能需要添加中文词表,目前有不少人做了相关工作,当然也可以自己添加自己需要的词表。

原始模型:各家框架的模型层名不太一样,训练时可能需要做一些调整,在预训练时尽量选择基座模型,不选 Chat 模型。

训练模型:跑通只是第一步,根据训练情况反复调整比较重要。

模型转换:不同框架的checkpoint格式不同,还会根据并行度分成很多个文件。

模型测试:简单测试下续写能力,验证下模型是否正常。

相关推荐
也许是_6 小时前
大模型原理之深度学习与神经网络入门
人工智能·深度学习·神经网络
数智顾问6 小时前
(111页PPT)大型集团IT治理体系规划详细解决方案(附下载方式)
大数据·人工智能
海棠AI实验室7 小时前
AI代发货(DropShopping)革命:构建自动化电商帝国终极指南
运维·人工智能·自动化
谢景行^顾7 小时前
深度学习--激活函数
人工智能·python·机器学习
三千院本院7 小时前
LlaMA_Factory实战微调Qwen-LLM大模型
人工智能·python·深度学习·llama
ifeng09187 小时前
HarmonyOS实战项目:AI健康助手(影像识别与健康分析)
人工智能·华为·wpf·harmonyos
Aevget7 小时前
界面控件Telerik UI for WPF 2025 Q3亮点 - 集成AI编码助手
人工智能·ui·wpf·界面控件·ui开发·telerik
ccLianLian7 小时前
计算机视觉·TagCLIP
人工智能·算法
aneasystone本尊7 小时前
重温 Java 21 之虚拟线程
人工智能
geneculture7 小时前
官学商大跨界 · 产学研大综合:融智学新范式应用体系
大数据·人工智能·物联网·数据挖掘·哲学与科学统一性·信息融智学