大模型之一:大语言模型预训练的过程

介绍

大语言模型的一般训练过程(3步):1、预训练学知识,2、指令微调学格式,3、强化学习对齐人类偏好

预训练

所以要想大模型有领域知识,得增量预训练(靠指令微调记知识不靠谱,不是几十w条数据能做到的)

1. 准备工作

准备基座模型->收集数据->数据清洗

2. 增量预训练所用训练框架

超大规模训练:选用 3D 并行,Megatron-Deepspeed拥有多个成功案例

少量节点训练:选用张量并行,但张量并行只有在 nvlink 环境下才会起正向作用,但提升也不会太明显。

少量卡训练:如果资源特别少,显存怎么也不够,可以使用 LoRA 进行增量预训练。

3. 增量预训练

先用大规模通用语料预训练,再用小规模领域语料二次训练

直接进行大规模领域语料预训练

通用语料比例混合领域语料同时训练

4. 流程

数据预处理:参考 LLaMA 的预训练长度,也把数据处理成2048长度(如果不够,做补全)。

分词器:如果使用 LLaMA 可能需要添加中文词表,目前有不少人做了相关工作,当然也可以自己添加自己需要的词表。

原始模型:各家框架的模型层名不太一样,训练时可能需要做一些调整,在预训练时尽量选择基座模型,不选 Chat 模型。

训练模型:跑通只是第一步,根据训练情况反复调整比较重要。

模型转换:不同框架的checkpoint格式不同,还会根据并行度分成很多个文件。

模型测试:简单测试下续写能力,验证下模型是否正常。

相关推荐
Hcoco_me4 分钟前
大模型面试题61:Flash Attention中online softmax(在线softmax)的实现方式
人工智能·深度学习·自然语言处理·transformer·vllm
哥布林学者4 分钟前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (七)双向 RNN 与深层 RNN
深度学习·ai
阿部多瑞 ABU7 分钟前
`chenmo` —— 可编程元叙事引擎 V2.3+
linux·人工智能·python·ai写作
极海拾贝1 小时前
GeoScene解决方案中心正式上线!
大数据·人工智能·深度学习·arcgis·信息可视化·语言模型·解决方案
知乎的哥廷根数学学派1 小时前
基于生成对抗U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演与成像方法(以模拟信号为例,Pytorch)
开发语言·人工智能·pytorch·python·深度学习·机器学习
小和尚同志1 小时前
又来学习提示词啦~13.9k star 的系统提示词集合
人工智能·aigc
昨夜见军贴06161 小时前
IACheck × AI审核重构检测方式:破解工业检测报告频繁返工的根本难题
人工智能·重构
知乎的哥廷根数学学派2 小时前
基于自适应多尺度小波核编码与注意力增强的脉冲神经网络机械故障诊断(Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习
好奇龙猫2 小时前
【AI学习-comfyUI学习-三十二节-FLXU原生态反推+controlnet depth(UNion)工作流-各个部分学习】
人工智能·学习