机器学习中的激活函数

激活函数存在的意义:

激活函数决定了某个神经元是否被激活,当这个神经元接收到的信息是有用或无用的时候,激活函数决定了对这个神经元接收到的信息是留下还是抛弃。如果不加激活函数,神经元仅仅做线性变换,那么该神经网络就会成为一个线性回归模型,此时对复杂非线性任务的处理能力是十分有限的。因此,需要添加非线性的激活函数,让神经网络的输入输出之间形成非线性映射,使得网络能力非常强大。

简单地说,一个神经元计算输入的权重和,加上偏置,如图所示:

数学公式为:net input = (weight * input) + bias

现在,神经网输入的值即net input可以从负无穷到正无穷。神经元并不知道怎么限制该值,因此无法选择firing pattern。因此激活函数便成为了神经网络的一个重要的部分。激活函数决定了一个神经元是否应该被激活。因此它限制了net input的值。激活函数是一个在将输入转到下一神经层或者将最后结果输出之前,对输入进行的非线性的转化函数。

激活函数的种类如下:

1.阶梯函数/ step function:

2.Sigmoid function

这是一个光滑的函数,是连续可微的。它比阶跃函数和线性函数的最大优点是它是非线性的。这是sigmoid函数的一个非常酷的特性。这本质上意味着当有多个神经元以s型函数作为它们的激活函数时输出也是非线性的。函数的取值范围为0-1,呈S形。

3.Relu函数

Relu函数和其它的激活函数不同的是,它不同时激活所有的神经元。当输入为负的时候,Relu将其转为0,且神经元不被激活。即 f(x) = max(0, x)

4.Leaky Relu

Relu的改进版本,输入小于0的部分并不直接归为0,而是为ax。

相关推荐
AI极客菌1 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭1 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^1 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246662 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k2 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫2 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班2 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k2 小时前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型
YRr YRr3 小时前
深度学习:循环神经网络(RNN)详解
人工智能·rnn·深度学习
sp_fyf_20243 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘