机器学习中的激活函数

激活函数存在的意义:

激活函数决定了某个神经元是否被激活,当这个神经元接收到的信息是有用或无用的时候,激活函数决定了对这个神经元接收到的信息是留下还是抛弃。如果不加激活函数,神经元仅仅做线性变换,那么该神经网络就会成为一个线性回归模型,此时对复杂非线性任务的处理能力是十分有限的。因此,需要添加非线性的激活函数,让神经网络的输入输出之间形成非线性映射,使得网络能力非常强大。

简单地说,一个神经元计算输入的权重和,加上偏置,如图所示:

数学公式为:net input = (weight * input) + bias

现在,神经网输入的值即net input可以从负无穷到正无穷。神经元并不知道怎么限制该值,因此无法选择firing pattern。因此激活函数便成为了神经网络的一个重要的部分。激活函数决定了一个神经元是否应该被激活。因此它限制了net input的值。激活函数是一个在将输入转到下一神经层或者将最后结果输出之前,对输入进行的非线性的转化函数。

激活函数的种类如下:

1.阶梯函数/ step function:

2.Sigmoid function

这是一个光滑的函数,是连续可微的。它比阶跃函数和线性函数的最大优点是它是非线性的。这是sigmoid函数的一个非常酷的特性。这本质上意味着当有多个神经元以s型函数作为它们的激活函数时输出也是非线性的。函数的取值范围为0-1,呈S形。

3.Relu函数

Relu函数和其它的激活函数不同的是,它不同时激活所有的神经元。当输入为负的时候,Relu将其转为0,且神经元不被激活。即 f(x) = max(0, x)

4.Leaky Relu

Relu的改进版本,输入小于0的部分并不直接归为0,而是为ax。

相关推荐
青松@FasterAI几秒前
【Arxiv 大模型最新进展】PEAR: 零额外推理开销,提升RAG性能!(★AI最前线★)
人工智能
huoyingcg8 分钟前
武汉火影数字|VR沉浸式空间制作 VR大空间打造
人工智能·科技·vr·虚拟现实·增强现实
冷冷清清中的风风火火22 分钟前
本地部署DeepSeek的硬件配置建议
人工智能·ai
sauTCc31 分钟前
RAG实现大致流程
人工智能·知识图谱
lqqjuly44 分钟前
人工智能驱动的自动驾驶:技术解析与发展趋势
人工智能·机器学习·自动驾驶
山东布谷科技官方1 小时前
AI大模型发展对语音直播交友系统源码开发搭建的影响
人工智能·实时音视频·交友
thinkMoreAndDoMore1 小时前
深度学习(2)-深度学习关键网络架构
人工智能·深度学习·机器学习
山海青风1 小时前
从零开始玩转TensorFlow:小明的机器学习故事 1
人工智能·机器学习·tensorflow
orion-orion2 小时前
学习理论:预测器-拒绝器多分类弃权学习
机器学习·统计学习·学习理论
B站计算机毕业设计超人2 小时前
计算机毕业设计hadoop+spark旅游景点推荐 旅游推荐系统 旅游可视化 旅游爬虫 景区客流量预测 旅游大数据 大数据毕业设计
大数据·hadoop·爬虫·深度学习·机器学习·数据可视化·推荐算法