机器学习中的激活函数

激活函数存在的意义:

激活函数决定了某个神经元是否被激活,当这个神经元接收到的信息是有用或无用的时候,激活函数决定了对这个神经元接收到的信息是留下还是抛弃。如果不加激活函数,神经元仅仅做线性变换,那么该神经网络就会成为一个线性回归模型,此时对复杂非线性任务的处理能力是十分有限的。因此,需要添加非线性的激活函数,让神经网络的输入输出之间形成非线性映射,使得网络能力非常强大。

简单地说,一个神经元计算输入的权重和,加上偏置,如图所示:

数学公式为:net input = (weight * input) + bias

现在,神经网输入的值即net input可以从负无穷到正无穷。神经元并不知道怎么限制该值,因此无法选择firing pattern。因此激活函数便成为了神经网络的一个重要的部分。激活函数决定了一个神经元是否应该被激活。因此它限制了net input的值。激活函数是一个在将输入转到下一神经层或者将最后结果输出之前,对输入进行的非线性的转化函数。

激活函数的种类如下:

1.阶梯函数/ step function:

2.Sigmoid function

这是一个光滑的函数,是连续可微的。它比阶跃函数和线性函数的最大优点是它是非线性的。这是sigmoid函数的一个非常酷的特性。这本质上意味着当有多个神经元以s型函数作为它们的激活函数时输出也是非线性的。函数的取值范围为0-1,呈S形。

3.Relu函数

Relu函数和其它的激活函数不同的是,它不同时激活所有的神经元。当输入为负的时候,Relu将其转为0,且神经元不被激活。即 f(x) = max(0, x)

4.Leaky Relu

Relu的改进版本,输入小于0的部分并不直接归为0,而是为ax。

相关推荐
aihuangwu6 分钟前
如何把豆包的回答导出
人工智能·ai·deepseek·ds随心转
好奇龙猫8 分钟前
【人工智能学习-AI入试相关题目练习-第十六次】
人工智能·学习
bing.shao12 分钟前
Golang 开发者视角:解读《“人工智能 + 制造” 专项行动》的技术落地机遇
人工智能·golang·制造
LOnghas121112 分钟前
玉米目标检测实战:基于YOLO13-C3k2-RFAConv的优化方案_1
人工智能·目标检测·计算机视觉
量子-Alex22 分钟前
【大模型课程笔记】斯坦福大学CS336 课程环境配置与讲座生成完整指南
人工智能·笔记
冬奇Lab26 分钟前
一天一个开源项目(第9篇):NexaSDK - 跨平台设备端 AI 运行时,让前沿模型在本地运行
人工智能·开源
量子-Alex37 分钟前
【大模型技术报告】Qwen2-VL大模型训练过程理解
人工智能
java1234_小锋43 分钟前
【AI大模型舆情分析】微博舆情分析可视化系统(pytorch2+基于BERT大模型训练微调+flask+pandas+echarts) 实战(上)
人工智能·flask·大模型·bert
新缸中之脑43 分钟前
Imagerouter.io: 免费图像生成API
人工智能
MM_MS1 小时前
Halcon图像点运算、获取直方图、直方图均衡化
图像处理·人工智能·算法·目标检测·计算机视觉·c#·视觉检测