机器学习中的激活函数

激活函数存在的意义:

激活函数决定了某个神经元是否被激活,当这个神经元接收到的信息是有用或无用的时候,激活函数决定了对这个神经元接收到的信息是留下还是抛弃。如果不加激活函数,神经元仅仅做线性变换,那么该神经网络就会成为一个线性回归模型,此时对复杂非线性任务的处理能力是十分有限的。因此,需要添加非线性的激活函数,让神经网络的输入输出之间形成非线性映射,使得网络能力非常强大。

简单地说,一个神经元计算输入的权重和,加上偏置,如图所示:

数学公式为:net input = (weight * input) + bias

现在,神经网输入的值即net input可以从负无穷到正无穷。神经元并不知道怎么限制该值,因此无法选择firing pattern。因此激活函数便成为了神经网络的一个重要的部分。激活函数决定了一个神经元是否应该被激活。因此它限制了net input的值。激活函数是一个在将输入转到下一神经层或者将最后结果输出之前,对输入进行的非线性的转化函数。

激活函数的种类如下:

1.阶梯函数/ step function:

2.Sigmoid function

这是一个光滑的函数,是连续可微的。它比阶跃函数和线性函数的最大优点是它是非线性的。这是sigmoid函数的一个非常酷的特性。这本质上意味着当有多个神经元以s型函数作为它们的激活函数时输出也是非线性的。函数的取值范围为0-1,呈S形。

3.Relu函数

Relu函数和其它的激活函数不同的是,它不同时激活所有的神经元。当输入为负的时候,Relu将其转为0,且神经元不被激活。即 f(x) = max(0, x)

4.Leaky Relu

Relu的改进版本,输入小于0的部分并不直接归为0,而是为ax。

相关推荐
ARM+FPGA+AI工业主板定制专家11 分钟前
基于Jetson+GMSL AI相机的工业高动态视觉感知方案
人工智能·机器学习·fpga开发·自动驾驶
新智元18 分钟前
刚刚,谷歌深夜上新 Veo 3.1!网友狂刷 2.75 亿条,Sora 2 要小心了
人工智能·openai
yuzhuanhei26 分钟前
Segment Anything(SAM)
人工智能
做科研的周师兄29 分钟前
【机器学习入门】7.4 随机森林:一文吃透随机森林——从原理到核心特点
人工智能·学习·算法·随机森林·机器学习·支持向量机·数据挖掘
lll上32 分钟前
三步对接gpt-5-pro!地表强AI模型实测
人工智能·gpt
喜欢吃豆36 分钟前
一份关于语言模型对齐的技术论述:从基于PPO的RLHF到直接偏好优化
人工智能·语言模型·自然语言处理·大模型·强化学习
超龄超能程序猿1 小时前
Spring AI Alibaba 与 Ollama对话历史的持久化
java·人工智能·spring
孤狼灬笑1 小时前
机器学习四范式(有监督、无监督、强化学习、半监督学习)
人工智能·强化学习·无监督学习·半监督学习·有监督学习
第七序章1 小时前
【C++】AVL树的平衡机制与实现详解(附思维导图)
c语言·c++·人工智能·机器学习
晨非辰2 小时前
【面试高频数据结构(四)】--《从单链到双链的进阶,读懂“双向奔赴”的算法之美与效率权衡》
java·数据结构·c++·人工智能·算法·机器学习·面试