Seq2seq+Attention 机器翻译

本文为🔗365天深度学习训练营内部文章

原作者:K同学啊

python 复制代码
from __future__ import unicode_literals, print_function, division
from io import open
import unicodedata
import string
import re
import random
import torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as F

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

1.搭建语言类

python 复制代码
SOS_token = 0
EOS_token = 1


# 语言类,方便对语料库进行操作
class Lang:
    def __init__(self, name):
        self.name = name
        self.word2index = {}
        self.word2count = {}
        self.index2word = {0: "SOS", 1: "EOS"}
        self.n_words = 2  # Count SOS and EOS

    def addSentence(self, sentence):
        for word in sentence.split(' '):
            self.addWord(word)

    def addWord(self, word):
        if word not in self.word2index:
            self.word2index[word] = self.n_words
            self.word2count[word] = 1
            self.index2word[self.n_words] = word
            self.n_words += 1
        else:
            self.word2count[word] += 1

2.文本处理函数

python 复制代码
def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
    )


# 小写化,剔除标点与非字母符号
def normalizeString(s):
    s = unicodeToAscii(s.lower().strip())
    s = re.sub(r"([.!?])", r" \1", s)
    s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)
    return s

3.文本读取函数

python 复制代码
def readLangs(lang1, lang2, reverse=False):
    print("Reading lines...")

    # 以行为单位读取文件
    lines = open('%s-%s.txt' % (lang1, lang2), encoding='utf-8'). \
        read().strip().split('\n')

    # 将每一行放入一个列表中
    # 一个列表中有两个元素,A语言文本与B语言文本
    pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines]

    # 创建Lang实例,并确认是否反转语言顺序
    if reverse:
        pairs = [list(reversed(p)) for p in pairs]
        input_lang = Lang(lang2)
        output_lang = Lang(lang1)
    else:
        input_lang = Lang(lang1)
        output_lang = Lang(lang2)

    return input_lang, output_lang, pairs


MAX_LENGTH = 10  # 定义语料最长长度

eng_prefixes = (
    "i am ", "i m ",
    "he is", "he s ",
    "she is", "she s ",
    "you are", "you re ",
    "we are", "we re ",
    "they are", "they re "
)


def filterPair(p):
    return len(p[0].split(' ')) < MAX_LENGTH and \
           len(p[1].split(' ')) < MAX_LENGTH and p[1].startswith(eng_prefixes)


def filterPairs(pairs):
    # 选取仅仅包含 eng_prefixes 开头的语料
    return [pair for pair in pairs if filterPair(pair)]


def prepareData(lang1, lang2, reverse=False):
    # 读取文件中的数据
    input_lang, output_lang, pairs = readLangs(lang1, lang2, reverse)
    print("Read %s sentence pairs" % len(pairs))

    # 按条件选取语料
    pairs = filterPairs(pairs[:])
    print("Trimmed to %s sentence pairs" % len(pairs))
    print("Counting words...")

    # 将语料保存至相应的语言类
    for pair in pairs:
        input_lang.addSentence(pair[0])
        output_lang.addSentence(pair[1])

    # 打印语言类的信息
    print("Counted words:")
    print(input_lang.name, input_lang.n_words)
    print(output_lang.name, output_lang.n_words)
    return input_lang, output_lang, pairs


input_lang, output_lang, pairs = prepareData('eng', 'fra', True)
print(random.choice(pairs))

4.编码器

python 复制代码
class EncoderRNN(nn.Module):
    def __init__(self, input_size, hidden_size):
        super(EncoderRNN, self).__init__()
        self.hidden_size = hidden_size
        self.embedding = nn.Embedding(input_size, hidden_size)
        self.gru = nn.GRU(hidden_size, hidden_size)

    def forward(self, input, hidden):
        embedded = self.embedding(input).view(1, 1, -1)
        output = embedded
        output, hidden = self.gru(output, hidden)
        return output, hidden

    def initHidden(self):
        return torch.zeros(1, 1, self.hidden_size, device=device)

5.解码器 加了Attention注意力机制

python 复制代码
class AttnDecoderRNN(nn.Module):
    def __init__(self, hidden_size, output_size,dropout_p=0.1,max_length=MAX_LENGTH):
        super(AttnDecoderRNN, self).__init__()
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.dropout_p = dropout_p
        self.max_length = max_length

        self.embedding = nn.Embedding(self.output_size, self.hidden_size)
        self.attn = nn.Linear(self.hidden_size * 2,self.max_length)
        self.attn_combine = nn.Linear(self.hidden_size * 2,self.hidden_size)
        self.dropout = nn.Dropout(self.dropout_p)
        self.gru = nn.GRU(self.hidden_size, self.hidden_size)
        self.out = nn.Linear(self.hidden_size, self.output_size)

    def forward(self, input, hidden,encoder_outputs):
        embedded = self.embedding(input).view(1, 1, -1)
        embedded = self.dropout(embedded)

        attn_weights = F.softmax(
            self.attn(torch.cat((embedded[0],hidden[0]),1)),dim=1
        )
        attn_applied = torch.bmm(attn_weights.unsqueeze(0),encoder_outputs.unsqueeze(0))

        output = torch.cat((embedded[0],attn_applied[0]),-1)
        output = self.attn_combine(output).unsqueeze(0)

        output = F.relu(output)
        output,hidden = self.gru(output,hidden)

        output = F.log_softmax(self.out(output[0]),dim=1)
        return output,hidden,attn_weights

    def initHidden(self):
        return torch.zeros(1, 1, self.hidden_size, device=device)

6.训练

python 复制代码
# 数据预处理
# 将文本数字化,获取词汇index
def indexesFromSentence(lang, sentence):
    return [lang.word2index[word] for word in sentence.split(' ')]


# 将数字化的文本,转化为tensor数据
def tensorFromSentence(lang, sentence):
    indexes = indexesFromSentence(lang, sentence)
    indexes.append(EOS_token)
    return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1)


# 输入pair文本,输出预处理好的数据
def tensorsFromPair(pair):
    input_tensor = tensorFromSentence(input_lang, pair[0])
    target_tensor = tensorFromSentence(output_lang, pair[1])
    return (input_tensor, target_tensor)

# 训练函数
teacher_forcing_ratio = 0.5


def train(input_tensor, target_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion, max_length=MAX_LENGTH):
    encoder_hidden = encoder.initHidden()
    encoder_optimizer.zero_grad()
    decoder_optimizer.zero_grad()

    input_length = input_tensor.size(0)
    target_length = target_tensor.size(0)

    encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)
    loss = 0

    # 编码阶段
    for ei in range(input_length):
        encoder_output, encoder_hidden = encoder(input_tensor[ei], encoder_hidden)
        encoder_outputs[ei] = encoder_output[0, 0]

    # 解码阶段
    decoder_input = torch.tensor([[SOS_token]], device=device)
    decoder_hidden = encoder_hidden

    use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False

    if use_teacher_forcing:
        for di in range(target_length):
            decoder_output, decoder_hidden, _ = decoder(decoder_input, decoder_hidden, encoder_outputs)  # ✅ 传入 encoder_outputs
            loss += criterion(decoder_output, target_tensor[di])
            decoder_input = target_tensor[di]  # Teacher forcing
    else:
        for di in range(target_length):
            decoder_output, decoder_hidden, _ = decoder(decoder_input, decoder_hidden, encoder_outputs)  # ✅ 传入 encoder_outputs
            topv, topi = decoder_output.topk(1)
            decoder_input = topi.squeeze().detach()
            loss += criterion(decoder_output, target_tensor[di])
            if decoder_input.item() == EOS_token:
                break

    loss.backward()
    encoder_optimizer.step()
    decoder_optimizer.step()

    return loss.item() / target_length

import time
import math


def asMinutes(s):
    m = math.floor(s / 60)
    s -= m * 60
    return '%dm %ds' % (m, s)


def timeSince(since, percent):
    now = time.time()
    s = now - since
    es = s / (percent)
    rs = es - s
    return '%s (- %s)' % (asMinutes(s), asMinutes(rs))


def trainIters(encoder, decoder, n_iters, print_every=1000,
               plot_every=100, learning_rate=0.01):
    start = time.time()
    plot_losses = []
    print_loss_total = 0  # Reset every print_every
    plot_loss_total = 0  # Reset every plot_every

    encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)
    decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)

    # 在 pairs 中随机选取 n_iters 条数据用作训练集
    training_pairs = [tensorsFromPair(random.choice(pairs)) for i in range(n_iters)]
    criterion = nn.NLLLoss()

    for iter in range(1, n_iters + 1):
        training_pair = training_pairs[iter - 1]
        input_tensor = training_pair[0]
        target_tensor = training_pair[1]

        loss = train(input_tensor, target_tensor, encoder,
                     decoder, encoder_optimizer, decoder_optimizer, criterion)
        print_loss_total += loss
        plot_loss_total += loss

        if iter % print_every == 0:
            print_loss_avg = print_loss_total / print_every
            print_loss_total = 0
            print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters),
                                         iter, iter / n_iters * 100, print_loss_avg))

        if iter % plot_every == 0:
            plot_loss_avg = plot_loss_total / plot_every
            plot_losses.append(plot_loss_avg)
            plot_loss_total = 0

    return plot_losses

def evaluate(encoder,decoder,sentence,max_length=MAX_LENGTH):
    with torch.no_grad():
        input_tensor = tensorFromSentence(input_lang,sentence)
        input_length = input_tensor.size()[0]
        encoder_hidden = encoder.initHidden()

        encoder_outputs = torch.zeros(max_length,encoder.hidden_size,device=device)

        for ei in range(input_length):
            encoder_output,encoder_hidden = encoder(input_tensor[ei],encoder_hidden)
            encoder_outputs[ei] += encoder_output[0,0]

        decoder_input = torch.tensor([[SOS_token]],device=device)   # SOS
        decoder_hidden = encoder_hidden
        decoded_words = []
        decoder_attentions = torch.zeros(max_length,max_length)

        for di in range(max_length):
            decoder_output,decoder_hidden,decoder_attention = decoder(decoder_input,decoder_hidden,encoder_outputs)
            decoder_attentions[di] = decoder_attention.data
            topv,topi = decoder_output.data.topk(1)

            if topi.item() == EOS_token:
                decoded_words.append('<EOS>')
                break
            else:
                decoded_words.append(output_lang.index2word[topi.item()])

            decoder_input = topi.squeeze().detach()

        return decoded_words,decoder_attentions[:di+1]

def evaluateRandomly(encoder,decoder,n=5):
    for i in range(n):
        pair = random.choice(pairs)
        print('>',pair[0])
        print('=',pair[1])
        output_words,attentions = evaluate(encoder,decoder,pair[0])
        output_sentence = ' '.join(output_words)
        print('<',output_sentence)
        print('')

7.评估

python 复制代码
hidden_size = 256
encoder1 = EncoderRNN(input_lang.n_words, hidden_size).to(device)
attn_decoder1 = AttnDecoderRNN(hidden_size,output_lang.n_words,dropout_p=0.1).to(device)
plot_losses = trainIters(encoder1, attn_decoder1, 10000, print_every=5000)
python 复制代码
evaluateRandomly(encoder1,attn_decoder1)

8.Loss函数

python 复制代码
# 1.loss图
import matplotlib.pyplot as plt
# 隐藏警告
import warnings

warnings.filterwarnings("ignore")  # 忽略警告信息
# plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100  # 分辨率

epochs_range = range(len(plot_losses))

plt.figure(figsize=(8, 3))

plt.subplot(1, 1, 1)
plt.plot(epochs_range, plot_losses, label='Training Loss')
plt.legend(loc='upper right')
plt.title('Training Loss')
plt.show()

9.可视化注意力

python 复制代码
# 2.可视化注意力
output_words,attentions = evaluate(encoder1,attn_decoder1,"je suis trop froid .")
plt.matshow(attentions.numpy())
python 复制代码
# 2.可视化注意力
output_words,attentions = evaluate(encoder1,attn_decoder1,"je suis trop froid .")
plt.matshow(attentions.numpy())

import matplotlib.ticker as ticker

def showAttentuon(input_sentence,output_words,attentions):
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(attentions.numpy(),cmap='bone')
    fig.colorbar(cax)

    ax.set_xticklabels([''] + input_sentence.split(' ') + ['<EOS>'],rotation=90)
    ax.set_yticklabels([''] + output_words)

    ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
    ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

    plt.show()

def evaluateAndShowAttention(input_sentence):
    output_words,attentions = evaluate(encoder1,attn_decoder1,input_sentence)
    print('input =',input_sentence)
    print('output =',' '.join(output_words))
    showAttentuon(input_sentence,output_words,attentions)

evaluateAndShowAttention('elle a cinq ans de moins que moi .')
evaluateAndShowAttention('elle est trop petit .')
evaluateAndShowAttention('je ne crains pas de mourir .')
evaluateAndShowAttention('c est un jeune directeur plein de talent .')
相关推荐
黑客思维者8 分钟前
机器学习014:监督学习【分类算法】(逻辑回归)-- 一个“是与非”的智慧分类器
人工智能·学习·机器学习·分类·回归·逻辑回归·监督学习
安思派Anspire13 分钟前
AI智能体:完整课程(高级)
人工智能
540_54013 分钟前
ADVANCE Day27
人工智能·python·机器学习
北邮刘老师16 分钟前
马斯克的梦想与棋盘:空天地一体的智能体互联网
数据库·人工智能·架构·大模型·智能体·智能体互联网
AI码上来17 分钟前
小智AI 如何自定义唤醒词+背景图:原理+流程拆解
人工智能
多则惑少则明18 分钟前
AI大模型实用(八)Java快速实现智能体整理(使用LangChain4j-agentic来进行情感分析/分类)
java·人工智能·spring ai·langchain4j
m0_6924571019 分钟前
ROI切割-感兴趣区域
人工智能·深度学习·计算机视觉
love530love20 分钟前
Win11+RTX3090 亲测 · ComfyUI Hunyuan3D 全程实录 ③:diso 源码编译实战(CUDA 13.1 零降级)
开发语言·人工智能·windows·python·comfyui·hunyuan3d·diso
落羽的落羽21 分钟前
【C++】深入浅出“图”——图的遍历与最小生成树算法
linux·服务器·c++·人工智能·算法·机器学习·深度优先
独自归家的兔26 分钟前
Qwen3-Omni-Captioner:通义千问 3-Omni 基座的智能音频描述开源模型
人工智能·语音识别