视觉检测系统,外观细节无可挑剔

在传统行业中,利用人工检测来检测产品外观缺陷依然是主流,但由于竞争的加剧,对企业生产效率的要求也越来越高。传统的检测产品外观缺陷问题的方法就是透过人工目检,或者工人采用游标卡尺等工具检测,此种方式检测速度慢、精度低,而且检测结果容易受到工人的主观情绪和精力水平的影响,容易出现误判漏判的错误,无法满足现代产品生产的要求。

使用 机器视觉检测产品外观的好处:

  1. 检测精度高。视觉检测装置采用高解析度工业相机,能够对人体肉眼看不到的地方进行检测。

  2. 检测效率高。机器视觉装置检测速度比工人快得多,可以迅速分析产品的NG/OK情况,从而提升客户满意度。

  3. 检测结果客观稳定。工人检测的结果会受到主观标准、个人情绪以及精力状况等因素的影响,但是装置是严格按照设定的标准执行,因此可以稳定的运行,相比于人眼检测的,良品率更高,提高产品的质量度。

  4. 视觉检测的成本比人工检测低。如今人工和管理成本都在不断上涨,而人工检测又是长期、持续的成本投入。机器视觉检测的投入主要是早期,一次性投入确保长期产出。从长远来说,机器视觉检测的成本更低。

是检测系统:sipotekccd.com

相关推荐
深瞳智检6 小时前
YOLO算法原理详解系列 第002期-YOLOv2 算法原理详解
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪
春末的南方城市11 小时前
开放指令编辑创新突破!小米开源 Lego-Edit 登顶 SOTA:用强化学习为 MLLM 编辑开辟全新赛道!
人工智能·深度学习·机器学习·计算机视觉·aigc
WWZZ202515 小时前
ORB_SLAM2原理及代码解析:SetPose() 函数
人工智能·opencv·算法·计算机视觉·机器人·自动驾驶
一人の梅雨15 小时前
1688 拍立淘接口深度开发:从图像识别到供应链匹配的技术实现
人工智能·算法·计算机视觉
飞翔的佩奇17 小时前
【完整源码+数据集+部署教程】 水果叶片分割系统: yolov8-seg-dyhead
人工智能·yolo·计算机视觉·数据集·yolov8·yolo11·水果叶片分割系统
春末的南方城市18 小时前
清华&字节开源HuMo: 打造多模态可控的人物视频,输入文字、图片、音频,生成电影级的视频,Demo、代码、模型、数据全开源。
人工智能·深度学习·机器学习·计算机视觉·aigc
m0_7431064618 小时前
LOBE-GS:分块&致密化效率提升
人工智能·算法·计算机视觉·3d·几何学
视觉人机器视觉19 小时前
机器视觉Halcon3D中,六大类3D处理算子
人工智能·计算机视觉·3d·视觉检测
CoovallyAIHub19 小时前
Transformer作者开源进化计算新框架,样本效率暴增数十倍!
深度学习·算法·计算机视觉
却道天凉_好个秋20 小时前
OpenCV(三):保存文件
人工智能·opencv·计算机视觉