机器学习和深度学习 --李宏毅(笔记与个人理解)Day 18

Day 18 Spatial Transformer Layer

因为单纯的cNN无法做到scaling(放大)and rotation(转),所以我们引入;

实战中也许我们可以做到 是因为 我们的training data 中包含了对data 的augmentation;

有一些 translation的性质,是因为 max pooling
这张ppt好好理解,我感觉它说明了spatial Transformen的 本质

  1. 专门训练一个layer 对图像进行旋转缩放
  2. 由于本质上还是一个神经网络结构,所以可以和CNN join it to learn 就是一起训练嘛(End to End)
  3. 不仅可以对input image 做变换(transform),也可以对CNN 的feature map进行

ok 以上说的三点就是它的特性了,应该没有哪一个是不懂的吧~

至于 why 1 ,下文来介绍它的工作原理

这张图我自己又加了一些笔记, 这里说的 是全连接的工作原理; hope you learned

我们可以用全连接来做transform ,例如
好了,基本学会了,就是数字图像处理学的那点东西,就是乘一个变换矩阵就好了
好了,没什么了不起,就是用神经网络 训练出三个变换矩阵

举例:
max pooling(IOU 连接网络?) 如何用Gradient Descent 解呢?


这里老师判断的角度应该是 对于参数的 Δ \Delta Δ w 会有一个 Δ \Delta Δy 与其对应,但是这个case 里面 Δ \Delta Δy = 0; 梯度为0 消失~

这样也能理解为什么老师认为max pooling 可以用来解,因为随着参数的变化,max的值一定会有变化,则可以进行梯度;即使max ()本身是不可微的

Interpolation -- 双线性插值
详情请参照 《数字图像处理》

固定了两个参数, 有点focus 的味道, 因为无法做旋转嘛智能做缩放

相关推荐
HyperAI超神经1 小时前
在线教程丨 David Baker 团队开源 RFdiffusion3,实现全原子蛋白质设计的生成式突破
人工智能·深度学习·学习·机器学习·ai·cpu·gpu
li星野4 小时前
打工人日报#20251231
笔记
一瞬祈望4 小时前
⭐ 深度学习入门体系(第 7 篇): 什么是损失函数?
人工智能·深度学习·cnn·损失函数
孙严Pay4 小时前
分享三种不同的支付体验,各自有着不同的特点与适用场景。
笔记·科技·计算机网络·其他·微信
阿正的梦工坊4 小时前
Kronecker积详解
人工智能·深度学习·机器学习
YJlio5 小时前
VolumeID 学习笔记(13.10):卷序列号修改与资产标识管理实战
windows·笔记·学习
Dfreedom.5 小时前
从 model(x) 到__call__:解密深度学习框架的设计基石
人工智能·pytorch·python·深度学习·call
weixin_440730505 小时前
java数组整理笔记
java·开发语言·笔记
小龙5 小时前
【学习笔记】多标签交叉熵损失的原理
笔记·学习·多标签交叉熵损失
汤姆yu5 小时前
基于深度学习的水稻病虫害检测系统
人工智能·深度学习