机器学习和深度学习 --李宏毅(笔记与个人理解)Day 18

Day 18 Spatial Transformer Layer

因为单纯的cNN无法做到scaling(放大)and rotation(转),所以我们引入;

实战中也许我们可以做到 是因为 我们的training data 中包含了对data 的augmentation;

有一些 translation的性质,是因为 max pooling
这张ppt好好理解,我感觉它说明了spatial Transformen的 本质

  1. 专门训练一个layer 对图像进行旋转缩放
  2. 由于本质上还是一个神经网络结构,所以可以和CNN join it to learn 就是一起训练嘛(End to End)
  3. 不仅可以对input image 做变换(transform),也可以对CNN 的feature map进行

ok 以上说的三点就是它的特性了,应该没有哪一个是不懂的吧~

至于 why 1 ,下文来介绍它的工作原理

这张图我自己又加了一些笔记, 这里说的 是全连接的工作原理; hope you learned

我们可以用全连接来做transform ,例如
好了,基本学会了,就是数字图像处理学的那点东西,就是乘一个变换矩阵就好了
好了,没什么了不起,就是用神经网络 训练出三个变换矩阵

举例:
max pooling(IOU 连接网络?) 如何用Gradient Descent 解呢?


这里老师判断的角度应该是 对于参数的 Δ \Delta Δ w 会有一个 Δ \Delta Δy 与其对应,但是这个case 里面 Δ \Delta Δy = 0; 梯度为0 消失~

这样也能理解为什么老师认为max pooling 可以用来解,因为随着参数的变化,max的值一定会有变化,则可以进行梯度;即使max ()本身是不可微的

Interpolation -- 双线性插值
详情请参照 《数字图像处理》

固定了两个参数, 有点focus 的味道, 因为无法做旋转嘛智能做缩放

相关推荐
卡布叻_星星11 分钟前
达梦数据库笔记之DM 管理工具安装与初始化
笔记
杜子不疼.16 分钟前
自然语言处理(NLP)实战指南:从传统方法到深度学习
人工智能·深度学习·自然语言处理
执行部之龙17 分钟前
JS-WebAPIs 学习笔记
前端·javascript·笔记·学习
式51620 分钟前
RAG检索增强生成基础(一)RAG基础原理
人工智能·机器学习
计算机网恋22 分钟前
思源笔记使用S3同步(阿里云OSS)
数据库·笔记·阿里云
狮子座明仔22 分钟前
O-Researcher:多智能体蒸馏与强化学习打造开源深度研究新标杆
人工智能·深度学习·语言模型·自然语言处理·开源
feiante123 分钟前
67、abb_ros2(PickNikRobotics)学习笔记(2)--- 显示机器人
笔记·学习·机器人
格林威33 分钟前
线缆外皮破损检测:保障电气安全的 7 个核心策略,附 OpenCV+Halcon 实战代码!
人工智能·opencv·安全·机器学习·计算机视觉·视觉检测·工业相机
岑梓铭44 分钟前
(YOLO前置知识点)神经网络、Pytorch、卷积神经网络CNN
人工智能·pytorch·笔记·深度学习·神经网络·yolo·计算机视觉
am心1 小时前
学习笔记-添加购物车&清空购物车
笔记·学习