机器学习和深度学习 --李宏毅(笔记与个人理解)Day 18

Day 18 Spatial Transformer Layer

因为单纯的cNN无法做到scaling(放大)and rotation(转),所以我们引入;

实战中也许我们可以做到 是因为 我们的training data 中包含了对data 的augmentation;

有一些 translation的性质,是因为 max pooling
这张ppt好好理解,我感觉它说明了spatial Transformen的 本质

  1. 专门训练一个layer 对图像进行旋转缩放
  2. 由于本质上还是一个神经网络结构,所以可以和CNN join it to learn 就是一起训练嘛(End to End)
  3. 不仅可以对input image 做变换(transform),也可以对CNN 的feature map进行

ok 以上说的三点就是它的特性了,应该没有哪一个是不懂的吧~

至于 why 1 ,下文来介绍它的工作原理

这张图我自己又加了一些笔记, 这里说的 是全连接的工作原理; hope you learned

我们可以用全连接来做transform ,例如
好了,基本学会了,就是数字图像处理学的那点东西,就是乘一个变换矩阵就好了
好了,没什么了不起,就是用神经网络 训练出三个变换矩阵

举例:
max pooling(IOU 连接网络?) 如何用Gradient Descent 解呢?


这里老师判断的角度应该是 对于参数的 Δ \Delta Δ w 会有一个 Δ \Delta Δy 与其对应,但是这个case 里面 Δ \Delta Δy = 0; 梯度为0 消失~

这样也能理解为什么老师认为max pooling 可以用来解,因为随着参数的变化,max的值一定会有变化,则可以进行梯度;即使max ()本身是不可微的

Interpolation -- 双线性插值
详情请参照 《数字图像处理》

固定了两个参数, 有点focus 的味道, 因为无法做旋转嘛智能做缩放

相关推荐
程序猿tu20 分钟前
Axios学习笔记
笔记·学习
carpell1 小时前
【语义分割专栏】3:Segnet原理篇
人工智能·python·深度学习·计算机视觉·语义分割
云之渺1 小时前
数学十三
深度学习
ahead~1 小时前
【大模型原理与技术-毛玉仁】第五章 模型编辑
人工智能·深度学习·机器学习
Mantanmu2 小时前
Python训练day40
人工智能·python·机器学习
小天才才2 小时前
前沿论文汇总(机器学习/深度学习/大模型/搜广推/自然语言处理)
人工智能·深度学习·机器学习·自然语言处理
l木本I2 小时前
大模型低秩微调技术 LoRA 深度解析与实践
python·深度学习·自然语言处理·lstm·transformer
MPCTHU2 小时前
机器学习的数学基础:神经网络
机器学习
笑鸿的学习笔记2 小时前
虚幻引擎5-Unreal Engine笔记之SET节点的输出引脚获取设置后的最新变量值
笔记·ue5·虚幻
草莓熊Lotso2 小时前
【数据结构初阶】--算法复杂度的深度解析
c语言·开发语言·数据结构·经验分享·笔记·其他·算法