机器学习和深度学习 --李宏毅(笔记与个人理解)Day 18

Day 18 Spatial Transformer Layer

因为单纯的cNN无法做到scaling(放大)and rotation(转),所以我们引入;

实战中也许我们可以做到 是因为 我们的training data 中包含了对data 的augmentation;

有一些 translation的性质,是因为 max pooling
这张ppt好好理解,我感觉它说明了spatial Transformen的 本质

  1. 专门训练一个layer 对图像进行旋转缩放
  2. 由于本质上还是一个神经网络结构,所以可以和CNN join it to learn 就是一起训练嘛(End to End)
  3. 不仅可以对input image 做变换(transform),也可以对CNN 的feature map进行

ok 以上说的三点就是它的特性了,应该没有哪一个是不懂的吧~

至于 why 1 ,下文来介绍它的工作原理

这张图我自己又加了一些笔记, 这里说的 是全连接的工作原理; hope you learned

我们可以用全连接来做transform ,例如
好了,基本学会了,就是数字图像处理学的那点东西,就是乘一个变换矩阵就好了
好了,没什么了不起,就是用神经网络 训练出三个变换矩阵

举例:
max pooling(IOU 连接网络?) 如何用Gradient Descent 解呢?


这里老师判断的角度应该是 对于参数的 Δ \Delta Δ w 会有一个 Δ \Delta Δy 与其对应,但是这个case 里面 Δ \Delta Δy = 0; 梯度为0 消失~

这样也能理解为什么老师认为max pooling 可以用来解,因为随着参数的变化,max的值一定会有变化,则可以进行梯度;即使max ()本身是不可微的

Interpolation -- 双线性插值
详情请参照 《数字图像处理》

固定了两个参数, 有点focus 的味道, 因为无法做旋转嘛智能做缩放

相关推荐
硅谷秋水18 小时前
RoboBrain 2.5:视野中的深度,思维中的时间
深度学习·机器学习·计算机视觉·语言模型·机器人
zhangfeng113318 小时前
Warmup Scheduler深度学习训练中,在训练初期使用较低学习率进行预热(Warmup),然后再按照预定策略(如余弦退火、阶梯下降等)衰减学习率的方法
人工智能·深度学习·学习
沃达德软件18 小时前
电信诈骗预警平台功能解析
大数据·数据仓库·人工智能·深度学习·机器学习·数据库开发
日更嵌入式的打工仔18 小时前
LAN9253中文注释第七章
笔记·原文翻译
青铜弟弟19 小时前
基于物理的深度学习模型
人工智能·深度学习
MaoziShan19 小时前
CMU Subword Modeling | 07 Allomorphy
人工智能·机器学习·语言模型·自然语言处理
向量引擎小橙20 小时前
视觉艺术的“奇点”:深度拆解 Gemini-3-Pro-Image-Preview 绘画模型,看这只“香蕉”如何重塑 AI 创作逻辑!
人工智能·python·gpt·深度学习·llama
byzh_rc21 小时前
[深度学习网络从入门到入土] 网络中的网络NiN
网络·人工智能·深度学习
人工智能AI酱1 天前
【AI深究】高斯混合模型(GMM)全网最详细全流程详解与案例(附Python代码演示) | 混合模型概率密度函数、多元高斯分布概率密度函数、期望最大化(EM)算法 | 实际案例与流程 | 优、缺点分析
人工智能·python·算法·机器学习·分类·回归·聚类
Piar1231sdafa1 天前
深度学习目标检测算法之YOLOv26加拿大鹅检测
深度学习·算法·目标检测