Mysql 为什么使用 B+Tree 作为索引结构

常规的数据库存储引擎,一般都是采用 B 树或者 B+树来实现索引的存储。

因为 B 树是一种多路平衡树,用这种存储结构来存储大量数据,它的整个高度会相比二叉树来说,会矮很多。

而对于数据库来说,所有的数据必然都是存储在磁盘上的,而磁盘 IO 的效率实际上是很低的,特别是在随机磁盘 IO 的情况下效率更低。

所以树的高度能够决定磁盘 IO 的次数,磁盘 IO 次数越少,对于性能的提升就越大,这也是为什么采用 B 树作为索引存储结构的原因。

但是在 Mysql 的 InnoDB 存储引擎里面,它用了一种增强的B 树结构,也就是B+树来作为索引和数据的存储结构。

相比较于 B 树结构,B+树做了几个方面的优化。

  1. B+树的所有数据都存储在叶子节点,非叶子节点只存储索引。
  2. 叶子节点中的数据使用双向链表的方式进行关联。
    使用 B+树来实现索引的原因,我认为有几个方面。
  3. B+树非叶子节点不存储数据,所以每一层能够存储的索引数量会增加,意味着B+树在层高相同的情况下存储的数据量要比 B 树要多,使得磁盘 IO 次数更少。
  4. 在 Mysql 里面,范围查询是一个比较常用的操作,而 B+树的所有存储在叶子节点的数据使用了双向链表来关联,所以在查询的时候只需将两个节点进行遍历就行,而B 树需要获取所有节点,所以B+树在范围查询上效率更高。
  5. 在数据检索方面,由于所有的数据都存储在叶子节点,所以 B+树的IO 次数会更加稳定一些。
  6. 因为叶子节点存储所有数据,所以 B+树的全局扫描能力更强一些,因为它只需要扫描叶子节点。但是 B 树需要遍历整个树。
    另外,基于 B+树这样一种结构,如果采用自增的整型数据作为主键,还能更好地避免增加数据的时候,带来叶子节点分裂导致的大量运算的问题。
    总的来说,我认为技术方案的选型,更多的是去解决当前场景下的特定问题,并不一定是说B+树就是最好的选择,就像 MongoDB 里面采用 B 树结构,本质上来说,其实是关系型数据库和非关系型数据库的差异。
相关推荐
Elastic 中国社区官方博客3 小时前
在 Elasticsearch 中使用 Mistral Chat completions 进行上下文工程
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
编程爱好者熊浪5 小时前
两次连接池泄露的BUG
java·数据库
南宫乘风6 小时前
基于 Flask + APScheduler + MySQL 的自动报表系统设计
python·mysql·flask
TDengine (老段)6 小时前
TDengine 字符串函数 CHAR 用户手册
java·大数据·数据库·物联网·时序数据库·tdengine·涛思数据
qq7422349846 小时前
Python操作数据库之pyodbc
开发语言·数据库·python
姚远Oracle ACE7 小时前
Oracle 如何计算 AWR 报告中的 Sessions 数量
数据库·oracle
Dxy12393102167 小时前
MySQL的SUBSTRING函数详解与应用
数据库·mysql
码力引擎7 小时前
【零基础学MySQL】第十二章:DCL详解
数据库·mysql·1024程序员节
杨云龙UP8 小时前
【MySQL迁移】MySQL数据库迁移实战(利用mysqldump从Windows 5.7迁至Linux 8.0)
linux·运维·数据库·mysql·mssql
l1t8 小时前
利用DeepSeek辅助修改luadbi-duckdb读取DuckDB decimal数据类型
c语言·数据库·单元测试·lua·duckdb