2024妈妈杯mathorcup数学建模C题 物流网络分拣中心货量预测及人员排班

一、数据预处理

数据清洗是指对数据进行清洗和整理,包括删除无效数据、缺失值填充、异常值检测和处理等。数据转换是指对数据进行转换和变换,包括数据缩放、数据归一化、数据标准化等。数据整理是指对数据进行整理和归纳,包括数据分组、数据聚合、数据汇总等。可视化是指将数据以图表的形式呈现出来,方便用户理解和分析数据。

数据预处理在处理数据时的作用非常重要。它可以帮助我们消除数据中的噪声和干扰,提高数据的准确性和可靠性。同时,数据预处理还可以帮助我们发现数据中的规律和趋势,提高数据的可分析性和可挖掘性。

然而,在进行数据预处理时,我们需要注意一些事项。首先,我们需要根据实际需求选择合适的数据预处理方法,避免过度处理或处理不足。其次,我们需要对数据进行备份,以免数据丢失或损坏。最后,我们需要对数据进行验证和确认,确保数据的准确性和可靠性。

针对本道题目,对数据进行排序,进行异常值处理,附件1和2的数据都很干净,就不需要做预处理了。但在论文中不要写肉眼看的干净,应该写使用python(或其他工具)进行批量数据检测,数据干净完整,不需要做额外预处理。

二、遗传算法优化BP神经网络参数进行时间序列预测

数据准备:将时间序列数据集分为训练集和测试集。训练集用于训练BP神经网络,测试集用于评估模型的预测性能。

BP神经网络构建:构建一个基本的BP神经网络模型,包括输入层、隐藏层和输出层。可以根据问题的复杂性和实际需求来确定网络的结构和参数。

遗传算法初始化:初始化遗传算法的种群,每个个体表示BP神经网络的权重和阈值等参数。

遗传算法评估:对每个个体进行评估,使用训练集进行BP神经网络的训练,并计算其在训练集上的适应度值。适应度值可以根据预测误差、均方根误差等指标来定义。

遗传算法选择:根据适应度值选择一部分个体作为父代,用于产生下一代个体。常用的选择策略有轮盘赌选择、排名选择等。

遗传算法交叉:对选出的父代个体进行交叉操作,生成子代个体。交叉操作可以通过交换权重、阈值等参数来实现。

遗传算法变异:对子代个体进行变异操作,引入随机性和多样性。变异操作可以通过微调权重、阈值等参数来实现。

BP神经网络更新:使用训练集对子代个体进行BP神经网络的训练,得到更新后的权重和阈值。

迭代优化:重复进行步骤4至步骤8,直到达到预设的迭代次数或满足终止条件为止。

模型评估:使用测试集评估优化后的BP神经网络模型的预测性能,计算预测误差、均方根误差等指标

三、预测结果

四、参考文献

思路及参考成品将在下方名片群文件中更新。

相关推荐
wmm_会飞的@鱼1 天前
FlexSim-汽车零部件仓库布局优化与仿真
服务器·前端·网络·数据库·数学建模·汽车
go54631584652 天前
基于分组规则的Excel数据分组优化系统设计与实现
人工智能·学习·生成对抗网络·数学建模·语音识别
go54631584652 天前
中文语音识别与偏误检测系统开发
开发语言·人工智能·学习·生成对抗网络·数学建模·语音识别
shenghaide_jiahu2 天前
数学建模——线性规划类题目(运筹优化类)
线性代数·数学建模
pk_xz1234563 天前
光电二极管探测器电流信号处理与指令输出系统
人工智能·深度学习·数学建模·数据挖掘·信号处理·超分辨率重建
Better Rose3 天前
2025年“创新杯”(原钉钉杯) A题 建模思路
人工智能·数学建模·钉钉
RS_数模加油站3 天前
2025创新杯(钉钉杯)数学建模 AB赛题已出
数学建模·钉钉杯·创新杯
行然梦实4 天前
论文阅读:《针对多目标优化和应用的 NSGA-II 综述》一些关于优化算法的简介
论文阅读·算法·数学建模
行然梦实5 天前
论文阅读:《无约束多目标优化的遗传算法,群体和进化计算》
论文阅读·算法·数学建模
您好啊数模君5 天前
30天打牢数模基础-决策树讲解
决策树·数学建模·2025数学建模国赛