pytorch 今日小知识2——F.avg_pool2d、clamp

复制代码
今天看到
复制代码
def gem(self, ipts):
    return F.avg_pool2d(ipts.clamp(min=self.eps).pow(self.p), (1, ipts.size(-1))).pow(1. / self.p)

这个函数中的F.avg_pool2d 不是很理解就查了一下

  1. ipts.clamp(1.0e-6) :

    这个操作将ipts中的每个元素限制在[1.0e-6, +inf)的范围内。也就是说,任何小于1.0e-6(一个非常小的正数)的值都会被替换为1.0e-6,而大于或等于1.0e-6的值则保持不变。这样做通常是为了避免数值不稳定问题,尤其是在进行对数运算、除法运算或幂运算时。

  2. .pow(6.5) :

    ipts(经过clamp操作后)中的每个元素提升到6.5的幂。

  3. F.avg_pool2d(..., (1, ipts.size(-1))) :

    使用F.avg_pool2d函数对张量进行平均池化操作。这里有两个关键的参数:

    • 第一个参数是输入张量,即经过clamp和pow操作后的ipts
    • 第二个参数(1, ipts.size(-1))定义了池化窗口的大小。这里,池化窗口的高度为1(即在高度上不进行池化),而宽度为ipts的最后一个维度的大小(即ipts.size(-1))。这意味着池化操作将在最后一个维度上进行,并且沿着这个维度取平均值。
  4. .pow(1. / 6.5) :

    将池化后的结果张量中的每个元素取6.5的倒数次幂。这实际上是前面.pow(6.5)操作的逆操作,用于恢复原始数据的某种形式

复制代码
import torch
import torch.nn.functional as F

F.avg_pool2d()数据是四维输入

input维度: (batch_size,channels,height,width)

kenerl维度:(二维:表示width的跨度)channel和输入的channle一致,如果数据是三维,则channel为1.(如果只写一个数n,kenerl=(n,n))

stride默认和kenerl一致,这是个二维的,所以在height和width上均和kenerl一致,越界同样丢弃。跟cnn卷积一致

在H和W维度求平均

复制代码
input=torch.randn(10,3,4,4)
m=F.avg_pool2d(input,(4,4))
print(m.size())

torch.Size([10, 3, 1, 1])

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(4,4))
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[0.8125]]])

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(4,4),stride=1)
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[0.8125, 0.8750],
         [0.8125, 0.8750]]])
相关推荐
黎燃3 小时前
短视频平台内容推荐算法优化:从协同过滤到多模态深度学习
人工智能
飞哥数智坊4 小时前
多次尝试用 CodeBuddy 做小程序,最终我放弃了
人工智能·ai编程
后端小肥肠5 小时前
别再眼馋 10w + 治愈漫画!Coze 工作流 3 分钟出成品,小白可学
人工智能·aigc·coze
唐某人丶8 小时前
教你如何用 JS 实现 Agent 系统(2)—— 开发 ReAct 版本的“深度搜索”
前端·人工智能·aigc
FIT2CLOUD飞致云8 小时前
九月月报丨MaxKB在不同规模医疗机构的应用进展汇报
人工智能·开源
阿里云大数据AI技术8 小时前
【新模型速递】PAI-Model Gallery云上一键部署Qwen3-Next系列模型
人工智能
袁庭新8 小时前
全球首位AI机器人部长,背负反腐重任
人工智能·aigc
机器之心9 小时前
谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长
人工智能·openai
算家计算9 小时前
AI配音革命!B站最新开源IndexTTS2本地部署教程:精准对口型,情感随心换
人工智能·开源·aigc
量子位9 小时前
马斯克周末血裁xAI 500人
人工智能·ai编程