【译】微调与人工引导: 语言模型调整中的 SFT 和 RLHF

原文地址:Fine-Tuning vs. Human Guidance: SFT and RLHF in Language Model Tuning

本文主要对监督微调(SFT, Supervised Fine Tuning )和人类反馈强化学习(RLHF, Reinforcement Learning from Human Feedback)进行简要比较。

方法

  • RLHF 采用迭代方法:利用人类对语言模型 (LLM) 输出的反馈来训练奖励模型。然后利用该模型通过强化学习来提高 LLM 的性能。然而,这种方法非常复杂,因为它需要创建和训练一个独特的奖励模型。这项任务往往极具挑战性,因为它涉及管理人类的各种偏好并解决偏差问题。
  • SFT 涉及直接训练,即直接在精心策划的数据集上完善语言模型 (LLM),该数据集包含描述目标任务或领域的注释示例。这种方法比较简单,只需要标注数据和传统的训练方法。

复杂性

  • 由于训练奖赏模型并与之交互需要大量资源,因此 RLHF 的计算成本往往很高。此外,还存在不稳定的风险,因为 RL 中的优化对奖励模型的不准确性很敏感,可能会导致意想不到的行为。
  • 另一方面,SFT 的计算成本更低,因为与 RLHF 相比,它的训练速度通常更快。此外,它还更稳定,因为它不容易出现意外行为,因为它直接在标记数据上进行训练。

结果

  • 当奖励模型真正代表人的价值观时,RLHF 有可能产生更准确、更理想的输出,从而更符合人的偏好。不过,这种方法往往会限制输出的多样性,导致创造力和惊喜减少,因为语言模型会努力使奖励信号最大化。
  • 另一方面,虽然与 RLHF 相比,SFT 在某些任务上的性能可能较低,尤其是在复杂的任务上,但它通常能保持较高的输出多样性。这种多样性源于语言模型固有的灵活性,使其能够产生更广泛的创造性反应。

需要考虑的其他因素

  • 数据质量是这两种方法的基础,但 RLHF 对奖励模型中存在的偏差和不准确性尤为敏感。确保高质量、多样化的标记数据对两种方法的成功都至关重要,但对 RLHF 而言尤为关键,因为它依赖于准确的人类反馈来塑造奖励模型和后续学习过程。
  • 在要求严格符合人类价值观的特定应用中,例如制作法律文件,RLHF 可能是首选方法,因为它能够根据反馈驱动的奖励模型精确地遵循这些价值观。相反,对于优先考虑创造性和多样化输出的任务,如诗歌创作或其他开放式的工作,SFT 可能更适合,因为它保留了语言模型固有的灵活性,允许产生更多样、更富有想象力的结果。
  • 最近的研究趋势表明,有了高质量的数据,监督微调(SFT)在某些情况下有可能取得与人类反馈强化学习(RLHF)相当甚至更优的结果。这一发现将 SFT 定位为这些特定情况下更直接、更高效的替代方案,展示了其在特定条件下,在配备高质量数据的情况下与 RLHF 相媲美或超越 RLHF 的能力。

在 RLHF 和 SFT 之间做出选择取决于各种因素,如任务的性质、可用资源和预期结果。每种方法都有自己的优缺点,因此必须了解它们之间的差异,以便有效地微调语言模型(LLM)。评估具体要求和每种方法的优缺点,有助于根据手头的任务做出明智的决定。

我相信这篇简明扼要的解释已经阐明了 RLHF 和 SFT 之间的区别,并使您能够做出正确的选择。

相关推荐
码农杂谈000711 分钟前
企业人工智能:2026 避坑指南,告别工具摆设,实现 AI 价值变现
人工智能·百度
tuotali202617 分钟前
氢气压缩机技术核心要点测评
大数据·人工智能
硅谷秋水29 分钟前
多智体机器人系统(MARS)挑战的进展与创新
深度学习·机器学习·计算机视觉·语言模型·机器人·人机交互
systeminof1 小时前
从类比到迁移:研究解析大脑“举一反三”的神经基础
人工智能
波动几何1 小时前
价格运动三大定律:从市场混沌到几何必然性
人工智能
志栋智能2 小时前
AI驱动的系统自动化巡检:重塑IT基石的智慧“守护神”
大数据·运维·人工智能·云原生·自动化
思通数科人工智能大模型2 小时前
电力巡检无人机和工程车“空地一体”AI全域巡检方案
人工智能·目标检测·计算机视觉·数据挖掘·无人机·知识图谱·零售
脑海科技实验室2 小时前
Nature子刊:新研究!人工智能提供更清晰的功能MRI脑数据
人工智能·fmri
qyr67892 小时前
便携式太阳能折叠板市场白皮书与未来趋势展望
大数据·人工智能·物联网·市场分析·市场报告·便携式太阳能折叠板·太阳能折叠板
yunhuibin2 小时前
AlexNet网络学习
人工智能·python·深度学习·神经网络