机器学习 基础 笔记 1

train阶段就是正常的学习

validation是知道正确答案是啥,检查正确率

test是不知道正确答案是啥,看看有啥结果

训练的时候记得model.train

测试(后面两种都是)的时候要model.eval

(有些模型两种阶段做的事不一样)

测试的时候记得with torch.no_grad(),一来省算力,一来防止自己学起来了

save,load

数据处理

生成式的神经网络就是要网络生成一系列结果,让这个结果与已有的数据对比,确保他们相似度高,不会出现离谱的结果。用G代表生成网络,D代表鉴别器网络

其实就是gan(生成对抗网络)分为生成器与鉴别器。生成器会产生"假数据",鉴别器需要对比真假数据,看出他们是真是假(也就是看出他们的解空间的差异,李宏毅老师所讲的divergence)

"

这是一个生成器和判别器博弈的过程。生成器生成假数据,然后将生成的假数据和真数据都输入判别器,判别器要判断出哪些是真的哪些是假的。判别器第一次判别出来的肯定有很大的误差,然后我们根据误差来优化判别器。现在判别器水平提高了,生成器生成的数据很难再骗过判别器了,所以我们得反过来优化生成器,之后生成器水平提高了,然后反过来继续训练判别器,判别器水平又提高了,再反过来训练生成器,就这样循环往复,直到达到纳什均衡。

"

LG=H(1,D(G(z)))

这是生成网络的损失函数。z是随机输入的x,H()是判断二者距离,1代表真

可见生成网络的目标就是让D尽量以为自己是真的(与数据集相近的)

LD=H(1,D(x))+H(0,D(G(z)))

这是判别网络的损失函数,0代表假。D(x)是鉴别器对真实数据的结果。

可见生成网络要尽量做到看出真的,认出假的。可以发现这其实就是一个二元分类器的经典loss函数。

可以看到,在训练(更新)D的时候要练到底,保证找到最大的divergence(差别),确认了这个G最大有多大的问题后,再更新G,这个G就不能更新太多次了,因为G变化太大可能导致D难以辨别,对应的原来那个点可能就不是divergence最大的那个点了。如图:

相关推荐
麻雀无能为力1 小时前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心1 小时前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
IMPYLH2 小时前
Python 的内置函数 reversed
笔记·python
.30-06Springfield2 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
说私域3 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技3 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
shangyingying_13 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
书玮嘎4 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
猫头虎4 小时前
猫头虎 AI工具分享:一个网页抓取、结构化数据提取、网页爬取、浏览器自动化操作工具:Hyperbrowser MCP
运维·人工智能·gpt·开源·自动化·文心一言·ai编程
要努力啊啊啊4 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪