机器学习 基础 笔记 1

train阶段就是正常的学习

validation是知道正确答案是啥,检查正确率

test是不知道正确答案是啥,看看有啥结果

训练的时候记得model.train

测试(后面两种都是)的时候要model.eval

(有些模型两种阶段做的事不一样)

测试的时候记得with torch.no_grad(),一来省算力,一来防止自己学起来了

save,load

数据处理

生成式的神经网络就是要网络生成一系列结果,让这个结果与已有的数据对比,确保他们相似度高,不会出现离谱的结果。用G代表生成网络,D代表鉴别器网络

其实就是gan(生成对抗网络)分为生成器与鉴别器。生成器会产生"假数据",鉴别器需要对比真假数据,看出他们是真是假(也就是看出他们的解空间的差异,李宏毅老师所讲的divergence)

"

这是一个生成器和判别器博弈的过程。生成器生成假数据,然后将生成的假数据和真数据都输入判别器,判别器要判断出哪些是真的哪些是假的。判别器第一次判别出来的肯定有很大的误差,然后我们根据误差来优化判别器。现在判别器水平提高了,生成器生成的数据很难再骗过判别器了,所以我们得反过来优化生成器,之后生成器水平提高了,然后反过来继续训练判别器,判别器水平又提高了,再反过来训练生成器,就这样循环往复,直到达到纳什均衡。

"

LG=H(1,D(G(z)))

这是生成网络的损失函数。z是随机输入的x,H()是判断二者距离,1代表真

可见生成网络的目标就是让D尽量以为自己是真的(与数据集相近的)

LD=H(1,D(x))+H(0,D(G(z)))

这是判别网络的损失函数,0代表假。D(x)是鉴别器对真实数据的结果。

可见生成网络要尽量做到看出真的,认出假的。可以发现这其实就是一个二元分类器的经典loss函数。

可以看到,在训练(更新)D的时候要练到底,保证找到最大的divergence(差别),确认了这个G最大有多大的问题后,再更新G,这个G就不能更新太多次了,因为G变化太大可能导致D难以辨别,对应的原来那个点可能就不是divergence最大的那个点了。如图:

相关推荐
沃达德软件4 小时前
智慧警务图像融合大数据
大数据·图像处理·人工智能·目标检测·计算机视觉·目标跟踪
QxQ么么5 小时前
移远通信(桂林)26校招-助理AI算法工程师-面试纪录
人工智能·python·算法·面试
愤怒的可乐5 小时前
从零构建大模型智能体:统一消息格式,快速接入大语言模型
人工智能·语言模型·自然语言处理
每天一个java小知识7 小时前
AI Agent
人工智能
('-')7 小时前
《从根上理解MySQL是怎样运行的》第十章学习笔记
笔记·学习·mysql
hd51cc7 小时前
MFC学习笔记 对话框
笔记·学习·mfc
猫头虎7 小时前
如何解决 pip install 编译报错 fatal error: hdf5.h: No such file or directory(h5py)问题
人工智能·python·pycharm·开源·beautifulsoup·ai编程·pip
龙赤子7 小时前
人工智能AI的大框架
人工智能
比奥利奥还傲.7 小时前
本地+AI+大模型自由用!Cherry+Studio打破局域网限制
人工智能
雪碧聊技术7 小时前
深度学习、机器学习、人工智能三者的关系
人工智能·深度学习·机器学习