分类算法——朴素贝叶斯(四)

概率基础

1概率定义

  • 概率定义为一件事情发生的可能性
    • 扔出一个硬币,结果头像朝上
  • P(X):取值在[0,1]

2女神是否喜欢计算案例

在讲这两个概率之前我们通过一个例子,来计算一些结果:

  • 问题如下:

    1、女神喜欢的概率?

    2、职业是程序员并且体型匀称的概率?

    3、在女神喜欢的条件下,职业是程序员的概率?

    4、在女神喜欢的条件下,职业是程序员,体重是超重的概率?

  • 计算结果为:

c 复制代码
P(喜欢)=4/7
P(程序员,匀称)=1/7
P(程序员|喜欢)=2/4 = 1/2
P(程序员,超重|喜欢)=1/4

联合概率、条件概率与相互独立

  • 联合概率:包含多个条件,且所有条件同时成立的概率
    • 记作:P(A,B)
    • 例如:P(程序员,匀称),P(程序员,超重|喜欢)
  • 条件概率:就是事件A在另外一个事件B已经发生条件下的发生概率
    • 记作:P(A|B)
    • 例如:P(程序员|喜欢),P(程序员,超重|喜欢)
  • 相互独立:如果P(A,B)=P(A)P(B),则称事件A与事件B相互独立。

贝叶斯公式

1公式

注:W为给定文档的特征值(频数统计,预测文档提供),C为文档类别。

2实例计算

即:

c 复制代码
P(喜欢|产品,超重)=P(产品,超重|喜欢)P(喜欢)/P(产品,超重)

上式中,P(产品,超重|喜欢)和P(产品,超重)的结果均为0,导致无法计算结果。这是因为样本量太少了,不具有代表性,本来现实生活中,肯定是存在职业是产品经理并且体重超重的人的,P(产品,超重)不可能为0;而且事件"职业是产品经理"和事件"体重超重"通常被认为是相互独立的事件,但是,根据我们有限的7个样本计算"P(产品,超重)=P(产品)P(超重)"不成立。

而朴素贝叶斯可以帮助我们解决这个问题

朴素贝叶斯,简单理解,就是假定了特征与特征之间相互独立的贝叶斯公式。也就是说,朴素贝叶斯,之所以朴素,就在于假定了特征与特征相互独立。

所以,思考题如果按照朴素贝叶斯的思路来解决,就可以是:

c 复制代码
P(产品,超重)=P(产品)*P(超重):2/7*3/7=6/49
p(产品,超重|喜欢)=P(产品|喜欢)*P(超重|喜欢)=1/2*1/4=1/8
P(喜欢|产品,超重)=P(产品,超重|喜欢)P(喜欢)/P(产品,超重)=1/8 * 4/7 / 6/49 = 7/12

朴素:假定特征与特征之间是相互独立的

贝叶斯:贝叶斯公式

公式分为三个部分:

  • P(C):每个文档类别的概率(某文档类别数/总文档数量)
  • P(W | C):给定类别下特征((被预测文档中出现的词)的概率
    • 计算方法:P(F1 | C)=Ni/N(训练文档中去计算)
      • Ni为该F1词在C类别所有文档中出现的次数
      • N为所属类别C下的文档所有词出现的次数和
  • P(F1,F2...)预测文档中每个词的概率

如果计算两个类别概率比较:

所以我们只要比较前面的大小就可以,得出谁的概率大

相关推荐
AI_56784 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
Liue612312315 小时前
YOLO11-C3k2-MBRConv3改进提升金属表面缺陷检测与分类性能_焊接裂纹气孔飞溅物焊接线识别
人工智能·分类·数据挖掘
小鸡吃米…6 小时前
机器学习的商业化变现
人工智能·机器学习
Lun3866buzha6 小时前
农业害虫检测_YOLO11-C3k2-EMSC模型实现与分类识别_1
人工智能·分类·数据挖掘
木非哲9 小时前
机器学习--随机森林--从一棵树的直觉到一片林的哲学
人工智能·随机森林·机器学习
大江东去浪淘尽千古风流人物10 小时前
【LingBot-Depth】深度补全/单目深度估计算法/立体匹配算法
机器人·大模型·概率论·端侧部署·巨身智能
A尘埃10 小时前
保险公司车险理赔欺诈检测(随机森林)
算法·随机森林·机器学习
小瑞瑞acd14 小时前
【小瑞瑞精讲】卷积神经网络(CNN):从入门到精通,计算机如何“看”懂世界?
人工智能·python·深度学习·神经网络·机器学习
民乐团扒谱机15 小时前
【微实验】机器学习之集成学习 GBDT和XGBoost 附 matlab仿真代码 复制即可运行
人工智能·机器学习·matlab·集成学习·xgboost·gbdt·梯度提升树
Σίσυφος190015 小时前
PCL法向量估计 之 RANSAC 平面估计法向量
算法·机器学习·平面