Pytorch中的钩子函数Hook函数

1. 为什么要使用Hook函数?

因为中间变量完成了反向传播后就自动释放了,因此无法读出存储的梯度。

2. 有什么样的Hook函数

  • torch.autograd.Variable.register_hook

    import torch

    def hook_fn(grad):
    print("Gradient:", grad)

    x = torch.tensor([1.0, 2.0], requires_grad=True)
    y = x + 2
    z = torch.mean(torch.pow(y, 2))

    y.register_hook(hook_fn)

    z.backward()

在这个例子中,我们在变量 y 上注册了钩子函数 hook_fn。当调用 z.backward() 进行反向传播计算梯度时,钩子函数 hook_fn 会被自动调用,并打印出相应的梯度值。

  • torch.nn.Module.register_backward_hook

    import torch

    def hook_fn(module, grad_input, grad_output):
    # 提取中间层的梯度
    intermediate_gradient = grad_input[0]
    # 对梯度进行处理或记录操作
    # ...

    class MyModel(torch.nn.Module):
    def init(self):
    super(MyModel, self).init()
    self.conv1 = torch.nn.Conv2d(3, 16, kernel_size=3)
    self.conv2 = torch.nn.Conv2d(16, 32, kernel_size=3)
    # ...

    复制代码
      def forward(self, x):
          x = self.conv1(x)
          x = self.conv2(x)
          # ...
          return x

    model = MyModel()

    在中间层conv1上注册钩子函数

    model.conv1.register_backward_hook(hook_fn)

    在中间层conv2上注册钩子函数

    model.conv2.register_backward_hook(hook_fn)

    input_data = torch.randn(1, 3, 32, 32)
    output = model(input_data)

    loss = output.sum()
    loss.backward()

在上述示例中,我们在模型的 conv1 和 conv2 层上分别注册了钩子函数 hook_fn。当模型进行反向传播时,钩子函数将分别捕获这两个中间层的梯度。

  • torch.nn.Module.register_forward_hook

    import torch
    import matplotlib.pyplot as plt

    def visualize_feature_map(module, input, output):
    # 可视化输出特征图
    feature_map = output.detach().squeeze()
    plt.imshow(feature_map, cmap='gray')
    plt.show()

    创建一个模块

    conv = torch.nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3)

    注册钩子函数,在前向传播时可视化输出特征图

    conv.register_forward_hook(visualize_feature_map)

    输入数据并进行前向传播

    input_data = torch.randn(1, 3, 32, 32)
    output = conv(input_data)

在这个例子中,我们创建了一个卷积模块conv,然后注册了一个钩子函数visualize_feature_map。该钩子函数在模块的前向传播过程中被调用,并可视化输出的特征图。

参考:https://www.zhihu.com/question/61044004/answer/183682138

相关推荐
摘星编程12 分钟前
智能体核心架构解析:感知-推理-行动的完整闭环
人工智能·智能体架构·感知系统·推理算法·行动控制
RAY_010416 分钟前
Python—数据容器
开发语言·python
June bug20 分钟前
【python基础】python和pycharm的下载与安装
开发语言·python·pycharm
二二孚日31 分钟前
自用华为ICT云赛道AI第一章知识点-机器学习的常见算法
人工智能·华为
聚客AI36 分钟前
🎯 RAG系统工业级部署指南:六步实现<3%幻觉率的问答系统
人工智能·langchain·llm
im_AMBER1 小时前
python实践思路(草拟计划+方法)
开发语言·python
站大爷IP1 小时前
Python与JSON:结构化数据的存储艺术
python
掘金一周1 小时前
Figma Dev Mode MCP:大人,时代变了 | 掘金一周7.10
前端·人工智能·mcp
大千AI助手1 小时前
陶哲轩:数学界的莫扎特与跨界探索者
人工智能·数学·机器学习·概率·人物·天才·陶哲轩