数据可视化的3D问题

三维对象非常流行,但在大多数情况下会对解释图形的准确性和速度产生负面影响。 以下是对涉及 3d 的主要图形类型的回顾,并讨论了它们是否被认为是不好的做法。

1、3D 条形图:不要

这是一个 3d 条形图。 你可能很熟悉这种图形,因为它是用 Excel 创建的,因此被广泛使用。 与经典的分组条形图相比,这种表示有几个缺点:

  • 找到条形的确切百分比更加困难
  • 按照构造,对于等效值,后面的绿色条看起来比前面的蓝色条小
  • 后面的绿色条被隐藏了

解决方法:使用正常的2D条形图即可。

2、3D 饼图:不要

除了 3D 饼图之外,没有什么比 dataviz 中的饼图更糟糕了。

添加 3D 会使情况变得更糟,因为它扭曲了现实。 确实,后面的部分看起来比前面的部分要小,但事实并非如此。

解决方法:不要制作3D饼图。

3、静态 3D 散点图:不要

3d 散点图是 3d 在数据可视化中的另一个常见用途。 这种图表采用 3 个数值变量作为输入,并在 X、Y 和 Z 轴上表示它们。

3D 散点图的准确性受到广泛讨论。 例如,尝试确定特定点的 X、Y 和 Z 坐标。 你会意识到这是不可能的,因为人眼读取 3D 的能力很差。 因此,该图形缺乏准确性。

解决方法:改用气泡图或带有颜色渐变的散点图。

4、交互式 3D 散点图:也许

在我看来,只有当你可以与图表交互时,3D 散点图才有意义。 在下面,你可以使用鼠标更改绘图的方向并对其进行缩放。 它给人一种真实的 3D 感觉,这是其他方式所不存在的。 获得点的准确坐标仍然很困难,但可以有效地探索群体结构。

5、表面图:为什么不呢

如果网格坐标的每个位置都有一个数值变量,则可以使用曲面图来表示数据。 这种表示方式尤其有意义,尤其是当数值表示海拔高度时。 在这种情况下,我们实际上正在构建一个 3D 元素,它是一个真正的 3D 对象,我认为这是有意义的。

相关推荐
深空数字孪生32 分钟前
AI+可视化:数据呈现的未来形态
人工智能·信息可视化
qfZYG2 小时前
根据数值范围动态调整标签(Label)的颜色
信息可视化
小小鱼儿小小林2 小时前
用AI制作黑神话悟空质感教程,3D西游记裸眼效果,西游人物跳出书本
人工智能·3d·ai画图
Ai尚研修-贾莲11 小时前
Python语言在地球科学交叉领域中的应用——从数据可视化到常见数据分析方法的使用【实例操作】
python·信息可视化·数据分析·地球科学
ykjhr_3d12 小时前
数据可视化与数据编辑器:直观呈现数据价值
信息可视化·编辑器
ʚɞ 短腿欧尼12 小时前
文本数据可视化
信息可视化·数据分析
爱凤的小光16 小时前
图漾相机——Sample_V2示例程序(待补充)
3d·图漾相机
请你喝好果汁64118 小时前
TWASandGWAS中GBS filtering and GWAS(1)
信息可视化·数据挖掘·数据分析
张人玉18 小时前
数据可视化大屏——物流大数据服务平台(二)
大数据·信息可视化
那就举个栗子!19 小时前
3DGS-to-PC:3DGS模型一键丝滑转 点云 or Mesh 【Ubuntu 20.04】【2025最新版!!】
3d·三维重建