一种基于镜像指示位办法的RingBuffer实现,解决Mirror和2的幂个数限制

简介

在嵌入式开发中,经常有需要用到RingBuffer的概念,在RingBuffer中经常遇到一个Buffer满和Buffer空的判断的问题,一般的做法是留一个单位的buffer不用,这样做最省事,但是当RingBuffer单位是一个结构体时,这个浪费就不能接受了,市面上大多数解决办法是镜像指示位办法,但是具体实现上又有各种设计,但是并不是满足的开发需要,所以有本项目。

本项目地址:bobwenstudy/simple_ringbuffer: 一种基于镜像指示位办法的RingBuffer实现,解决Mirror和2的幂个数限制 (github.com),参考资料有:环形缓冲器 - 维基百科,自由的百科全书 (wikipedia.org)ring buffer,一篇文章讲透它? - 知乎 (zhihu.com)

对比现有的实现,本项目的特点是。

类别 simple_ringbuffer kfifo(linux) ringbuffer (rt-thread)
需要mirror位(多进程风险)
需要个数为2的幂
支持结构体成员 是(linux5.7)

mirror位

多了Mirror位就会有一个多进程操作的风险,除非Mirror位和数值同时写入。所以最好不要有Mirror位。

个数为2的幂

Linux的kfifo解决了Mirror位的问题,因为其用到了uint32_t回环的特性,需要个数为2个幂。虽然这样大大减少了算法工作量,也可以用位运算来优化取余预算的计算效率。但是使用起来多少不是很舒适,尤其设计到对结构体成员操作时,一不注意又要浪费Buffer。

支持结构体成员

其实如果RingBuffer成员的单位为1个字节的话,其实没必要在乎1个字节的损失,只是使用时需要多申请1个字节,多少看起来不是很清爽。

但是当RingBuffer的成员的单位为很大的值时,1个成员的损失才至关重要。

现有的项目考虑灵活性,RingBuffer需要支持各种字节操作,效率并不高,本项目针对结构体操作需要,专门设计了Data_RingBuffer工具来对多字节场景进行处理,操作效率更高,并提供了2种操作接口,以满足不同业务操作的需要。

镜像指示位-本项目实现

本项目不想有Mirror的操作问题,也不想有个数2的幂的限制。处理上做了一些特殊的处理,严格区分index和ptr的概念。

index的取值范围为[0~2n-1],并不像Linux取到最大值,解决了个数2的幂的限制。

write_index = ringbuf->write_index + len;
if (write_index >= (ringbuf->total_size << 1))
{
    write_index -= (ringbuf->total_size << 1);
}
ringbuf->write_index = write_index;

其中ptr的获取,考虑效率使用减法,不使用取余运算。

#define RINGBUFFER_INDEX_TO_PTR(_index, _total_size)                                               \
    ((_index >= _total_size) ? (_index - _total_size) : (_index))
uint32_t wptr = RINGBUFFER_INDEX_TO_PTR(ringbuf->write_index, ringbuf->total_size);

代码结构

代码结构如下所示:

  • simple_ringbuffer :Ringbuffer实现,包含结构体操作实现simple_data_ringbuffer和缓冲池操作实现simple_data_ringbuffer
  • test_0.ctest_1.ctest_2.c:测试例程。
  • main.c:测试例程。
  • build.mkMakefile:Makefile编译环境。
  • README.md:说明文档
shell 复制代码
simple_ringbuffer
 ├── simple_ringbuffer
 │   ├── simple_data_ringbuffer.c
 │   ├── simple_data_ringbuffer.h
 │   ├── simple_ringbuffer.c
 │   └── simple_ringbuffer.h
 ├── build.mk
 ├── code_format.py
 ├── LICENSE
 ├── main.c
 ├── Makefile
 ├── README.md
 ├── test_0.c
 └── test_1.c

使用说明

具体如何使用直接看例程就行,非常简单,看函数名和变量名即可。

单字节操作

使用提供simple_ringbuffer.h接口操作即可。

c 复制代码
// Define ringbuf.
SIMPLE_RINGBUFFER_DEFINE(test_ringbuf, 0x100);

// Put data to ringbuf.
uint8_t data[0x10];
simple_ringbuffer_put(&test_ringbuf, data, sizeof(data));

// Get data from ringbuf.
uint8_t rdata[0x10];
simple_ringbuffer_get(&test_ringbuf, rdata, sizeof(rdata));

结构体操作

使用提供simple_data_ringbuffer.h接口操作即可。提供了两种接口,按需使用。

c 复制代码
struct test_user_data
{
    uint8_t data[0x10];
};

// Define ringbuf.
SIMPLE_DATA_RINGBUFFER_DEFINE(test_ringbuf, 0x100, sizeof(struct test_user_data));


// API1
// Put data to ringbuf.
struct test_user_data data;
simple_ringbuffer_put(&test_ringbuf, &data);

// Get data to ringbuf.
struct test_user_data rdata;
simple_ringbuffer_get(&test_ringbuf, &rdata);


// API2
// Enqueue data to ringbuf.
struct test_user_data *data = NULL;
uint16_t index = simple_data_ringbuffer_enqueue_get(&test_ringbuf, (void **)&data); // enqueue get

simple_data_ringbuffer_enqueue(&test_ringbuf, index); // real enqueue


// Dequeue data from ringbuf.
struct test_user_data *data;
data = simple_data_ringbuffer_dequeue_peek(&test_ringbuf); // dequeue peek

simple_data_ringbuffer_dequeue(&test_ringbuf); // real dequeue

缓存池操作

ringbuffer必须先入先出,在部分不是先入先出场景下,又想用RingBuffer读写线程独立的特性,本项目提供了一个简易数据缓存池实现方案,通过只保存数据指针的方式,来实现非先入先出的数据缓冲池。

其结构体如下。simple_pool_t用于缓冲池管理,由于RingBuffer存储的是指针,所以需要通过item_size记录每个成员的实际大小。定义一个Pool时,需要指针数组_name##_fifo_storage[_num],其用于存储实际存放数据的指针,用RingBuffer管理。真实存数据的区域为_name##_data_storage[_num][MROUND(_data_size)]

c 复制代码
typedef struct simple_pool
{
    simple_data_ringbuffer_t ringbuf;
    uint16_t item_size;
} simple_pool_t;

#define SIMPLE_POOL_DEFINE(_name, _num, _data_size)                                                \
    static simple_pool_t _name;                                                                    \
    static void *_name##_fifo_storage[_num];                                                       \
    static uint8_t _name##_data_storage[_num][MROUND(_data_size)];

使用操作如下:

c 复制代码
struct test_user_data
{
    uint8_t data[0x100];
};

// Define pool.
SIMPLE_POOL_DEFINE(test_pool, 0x10, sizeof(struct test_user_data));

// Init pool.
SIMPLE_POOL_INIT(test_pool, 0x10, sizeof(struct test_user_data));

// Get data from pool.
struct test_user_data *data;
SIMPLE_POOL_DEQUEUE(&test_pool, data);

// Put data to pool.
SIMPLE_POOL_ENQUEUE(&test_pool, data);

测试说明

环境搭建

本项目支持Windows和Linux编译,同时支持Code Space在线编译,如果不想搭建环境可以直接CodeSpace编译。

Windows编译

目前需要安装如下环境:

GitHub-CodeSpace编译

直接在线编译即可。

编译说明

本项目都是由makefile组织编译的,编译整个项目只需要执行make all即可。

也就是可以通过如下指令来编译工程:

shell 复制代码
make all

而后运行执行make run即可运行例程,例程中实现了上述文档说明的问题和API的基本测试。

shell 复制代码
PS D:\workspace\github\simple_ringbuffer> make run
Compiling  : "test_0.c"
Compiling  : "test_1.c"
Linking    : "output/main.exe"
Building   : "output/main.exe"
Start Build Image.
objcopy -v -O binary output/main.exe output/main.bin
copy from `output/main.exe' [pei-i386] to `output/main.bin' [binary]
objdump --source --all-headers --demangle --line-numbers --wide output/main.exe > output/main.lst
Print Size
   text    data     bss     dec     hex filename
 118200  265384    2644  386228   5e4b4 output/main.exe
./output/main.exe
Testing test_work .......................................................... pass
Testing test_work_insuff ................................................... pass
Testing test_work_invalid .................................................. pass
Testing test_work_full ..................................................... pass
Testing test_work_full_define .............................................. pass
Testing test_work_read_index_big_to_write_index ............................ pass
Testing test_work_read_index_big_to_write_index ............................ pass
Testing test_work_odd ...................................................... pass
Testing test_work_insuff_odd ............................................... pass
Testing test_work_invalid_odd .............................................. pass
Testing test_work_full_odd ................................................. pass
Testing test_work_read_index_big_to_write_index_odd ........................ pass
Testing test_data_work ..................................................... pass
Testing test_data_work_full ................................................ pass
Testing test_data_work_full_define ......................................... pass
Testing test_data_work_full_define_enqueue ................................. pass
Testing test_data_work_odd ................................................. pass
Testing test_data_work_full_odd ............................................ pass
Executing 'run: all' complete!

可以看到,所有涉及到测试都通过。

相关推荐
小林熬夜学编程1 小时前
【Linux网络编程】第十四弹---构建功能丰富的HTTP服务器:从状态码处理到服务函数扩展
linux·运维·服务器·c语言·网络·c++·http
Jackey_Song_Odd1 小时前
C语言 单向链表反转问题
c语言·数据结构·算法·链表
A懿轩A2 小时前
C/C++ 数据结构与算法【数组】 数组详细解析【日常学习,考研必备】带图+详细代码
c语言·数据结构·c++·学习·考研·算法·数组
半盏茶香3 小时前
在21世纪的我用C语言探寻世界本质 ——编译和链接(编译环境和运行环境)
c语言·开发语言·c++·算法
字节高级特工4 小时前
【C++】深入剖析默认成员函数3:拷贝构造函数
c语言·c++
计算机学长大白5 小时前
C中设计不允许继承的类的实现方法是什么?
c语言·开发语言
疯狂飙车的蜗牛8 小时前
从零玩转CanMV-K230(4)-小核Linux驱动开发参考
linux·运维·驱动开发
yutian06068 小时前
Keil MDK下载程序后MCU自动重启设置
单片机·嵌入式硬件·keil
XH华10 小时前
初识C语言之二维数组(下)
c语言·算法
析木不会编程11 小时前
【小白51单片机专用教程】protues仿真独立按键控制LED
单片机·嵌入式硬件·51单片机