超平实版Pytorch CNN Conv2d

torch.nn.Conv2d

基本参数

in_channels (int)

输入的通道数量。比如一个2D的图片,由R、G、B三个通道的2D数据叠加。

out_channels (int)

输出的通道数量。

kernel_size (int or tuple)

kernel(也就是卷积核,也可以称为filter)的形状

bias (bool, optional)

是否加上一个可学习的bias。 Default: True.

stride (int or tuple)

卷积步长。

注:关于为什么kernel_size和stride可以有int、tuple两种表示方式

如果是int,就是对于高那条边、宽那条边应用一样的值。比如如果你的kernel是int,那就是一个正方形的kernel。

如果是tuple,则第1个值 应用在高那条边 上,第2个值 应用在宽那条边上!

输入输出的形状

输入形状:

( N , C i n , H , W ) (N, C_{in}, H, W) (N,Cin,H,W)

N N N是batch size

C i n C_{in} Cin是输出的通道数量

H H H是2D input的高度

W W W是2D input的宽度

输出形状:

( N , C o u t , H o u t , W o u t ) (N, C_{out}, H_{out}, W_{out}) (N,Cout,Hout,Wout)

公式

公式左边:

N N N是batch size

C o u t C_{out} Cout是输出的通道

(i, j)是索引

所以这里的 o u t ( N i , C o u t j ) out(N_i, {C_{out}}_j) out(Ni,Coutj)指的就是当前batch中第I个数据的第j个通道的情况。

你就理解为,现在开始我们抛开batch不谈,且就看一个通道。

公式右边:

五角星理解为一个操作

k k k是在数数,从0数到 C i n − 1 C_{in-1} Cin−1,也就是循环一遍input中的通道数量而已。

图例

(图片引用自Apply a 2D Convolution Operation in PyTorch

对于每一次kernel的移动:完全对应的位置,数字两两相乘,然后每一对的结果相加,最后加上bias。这里不确定为什么kernel画了三个颜色,我觉得可能只是表示下面计算的顺序是从左到右、从上到下写的。


参考文档

  1. Pytorch Conv2d文档
  2. Apply a 2D Convolution Operation in PyTorch
  3. PyTorch 2D Convolution
相关推荐
天***88968 分钟前
在线教育小程序定制开发,知识付费系统AI问答网课录播APP
人工智能·小程序
qq7422349841 小时前
VitePress静态网站从零搭建到GitHub Pages部署一站式指南和DeepWiki:AI 驱动的下一代代码知识平台
人工智能·python·vue·github·vitepress·wiki
式5161 小时前
线性代数(五)向量空间与子空间
人工智能·线性代数·机器学习
yiersansiwu123d7 小时前
AI伦理治理:在创新与规范之间寻找平衡之道
人工智能
程途拾光1587 小时前
AI 生成内容的伦理边界:深度伪造与信息真实性的保卫战
人工智能
趣味科技v7 小时前
亚马逊云科技储瑞松:AI智能体正在重塑未来工作模式
人工智能·科技
GEO AI搜索优化助手7 小时前
GEO生态重构:生成式引擎优化如何重塑信息传播链
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
爱笑的眼睛118 小时前
GraphQL:从数据查询到应用架构的范式演进
java·人工智能·python·ai
江上鹤.1488 小时前
Day40 复习日
人工智能·深度学习·机器学习
QYZL_AIGC8 小时前
全域众链以需求为基、政策为翼,创AI + 实体的可行之路
人工智能