压缩感知的概述梳理(1)

参考文献

An efficient visually meaningful image compression and encryption scheme based on compressive sensing and dynamic LSB embedding

基本内容

基本关系梳理

压缩感知核心元素
  1. 信号 x
    • 长度:N
    • 动态稀疏或可用变换表示:x = 𝝍s
  2. 测量矩阵 𝚽
    • 尺寸:M × N
  3. 变换矩阵 𝝍
    • 变换类型:如DCT, DWT, FFT
  4. 系数向量 s
    • 尺寸:N × 1
  5. 测量向量 y
    • 尺寸:M × 1
    • 定义:y = 𝚽x = 𝚽𝜓s = 𝐹s
  6. 感知矩阵 F
    • 尺寸:M × N
    • 与𝚽和𝝍的关系:F = 𝚽𝝍
  7. 重建信号 x 的方法
    • 约束优化:min ‖𝐬‖1 s.t. 𝐲 = 𝚽𝜓𝑠
    • 相关算法:匹配追踪 (MP), 正交匹配追踪 (OMP), 平滑化l0范数 (SL0)
应用
  • 用于压缩和加密Iorig
  • 测量向量作为Iciph
  • 测量矩阵作为密钥

对应关系

变量 定义/描述 尺寸 公式相关被引用
x 信号 N x 1 x = 𝝍s, 𝐲 = 𝚽x
𝚽 测量矩阵 M x N 𝐲 = 𝚽x
𝝍 变换矩阵,可采用DCT, DWT, FFT等 N x N x = 𝝍s
s 稀疏系数向量 N x 1 x = 𝝍s
y 测量向量 M x 1 𝐲 = 𝚽x = 𝚽𝜓s = 𝐹s
F 感知矩阵,定义为F=𝚽𝝍 M x N 𝐲 = F s
‖s‖1 s 的 l1-范数 _ min ‖𝐬‖1
Iorig 原始图像数据(用途说明) _ _
Iciph 加密后的测量向量(用途说明) _ _

此图和表格反映了压缩感知理论的核心概念及其内部关系,并说明了在图像加密和压缩中的实际应用案例。

相关推荐
多看书少吃饭7 小时前
基于 OpenCV 的眼球识别算法以及青光眼算法识别
人工智能·opencv·计算机视觉
Blossom.1188 小时前
从“能写”到“能干活”:大模型工具调用(Function-Calling)的工程化落地指南
数据库·人工智能·python·深度学习·机器学习·计算机视觉·oracle
无妄无望9 小时前
目标计数论文阅读(1)Class-Agnostic Counting
论文阅读·计算机视觉
slandarer9 小时前
MATLAB | 这是屎吗?抱歉打错了,这是什么?
开发语言·matlab
小王爱学人工智能9 小时前
利用OpenCV进行指纹识别的案例
人工智能·opencv·计算机视觉
小王爱学人工智能10 小时前
OpenCV的特征检测
人工智能·opencv·计算机视觉
AndrewHZ11 小时前
【图像处理基石】图像压缩有哪些经典算法?
图像处理·计算机视觉·dct·cv·图像压缩·哈夫曼编码·rle
chxin1401612 小时前
openCV3.0 C++ 学习笔记补充(自用 代码+注释)---持续更新 四(91-)
c++·opencv·计算机视觉
茜茜西西CeCe12 小时前
数字图像处理-巴特沃斯高通滤波、低通滤波
图像处理·opencv·计算机视觉·matlab·巴特沃斯高通滤波·巴特沃斯低通滤波
IT古董13 小时前
【第五章:计算机视觉】1.计算机视觉基础-(3)卷积神经网络核心层与架构分析:卷积层、池化层、归一化层、激活层
人工智能·计算机视觉·cnn