压缩感知的概述梳理(1)

参考文献

An efficient visually meaningful image compression and encryption scheme based on compressive sensing and dynamic LSB embedding

基本内容

基本关系梳理

压缩感知核心元素
  1. 信号 x
    • 长度:N
    • 动态稀疏或可用变换表示:x = 𝝍s
  2. 测量矩阵 𝚽
    • 尺寸:M × N
  3. 变换矩阵 𝝍
    • 变换类型:如DCT, DWT, FFT
  4. 系数向量 s
    • 尺寸:N × 1
  5. 测量向量 y
    • 尺寸:M × 1
    • 定义:y = 𝚽x = 𝚽𝜓s = 𝐹s
  6. 感知矩阵 F
    • 尺寸:M × N
    • 与𝚽和𝝍的关系:F = 𝚽𝝍
  7. 重建信号 x 的方法
    • 约束优化:min ‖𝐬‖1 s.t. 𝐲 = 𝚽𝜓𝑠
    • 相关算法:匹配追踪 (MP), 正交匹配追踪 (OMP), 平滑化l0范数 (SL0)
应用
  • 用于压缩和加密Iorig
  • 测量向量作为Iciph
  • 测量矩阵作为密钥

对应关系

变量 定义/描述 尺寸 公式相关被引用
x 信号 N x 1 x = 𝝍s, 𝐲 = 𝚽x
𝚽 测量矩阵 M x N 𝐲 = 𝚽x
𝝍 变换矩阵,可采用DCT, DWT, FFT等 N x N x = 𝝍s
s 稀疏系数向量 N x 1 x = 𝝍s
y 测量向量 M x 1 𝐲 = 𝚽x = 𝚽𝜓s = 𝐹s
F 感知矩阵,定义为F=𝚽𝝍 M x N 𝐲 = F s
‖s‖1 s 的 l1-范数 _ min ‖𝐬‖1
Iorig 原始图像数据(用途说明) _ _
Iciph 加密后的测量向量(用途说明) _ _

此图和表格反映了压缩感知理论的核心概念及其内部关系,并说明了在图像加密和压缩中的实际应用案例。

相关推荐
Dfreedom.4 小时前
图像直方图完全解析:从原理到实战应用
图像处理·python·opencv·直方图·直方图均衡化
IT猿手5 小时前
基于强化学习的多算子差分进化路径规划算法QSMODE的机器人路径规划问题研究,提供MATLAB代码
算法·matlab·机器人
Dfreedom.6 小时前
图像处理中的对比度增强与锐化
图像处理·人工智能·opencv·锐化·对比度增强
Ryan老房6 小时前
智能家居AI-家庭场景物体识别标注实战
人工智能·yolo·目标检测·计算机视觉·ai·智能家居
xrgs_shz7 小时前
什么是LLM、VLM、MLLM、LMM?它们之间有什么关联?
人工智能·计算机视觉
CoovallyAIHub7 小时前
让本地知识引导AI追踪社区变迁,让AI真正理解社会现象
深度学习·算法·计算机视觉
晚霞的不甘7 小时前
Flutter for OpenHarmony实现 RSA 加密:从数学原理到可视化演示
人工智能·flutter·计算机视觉·开源·视觉检测
图学习小组7 小时前
Degradation-Aware Feature Perturbation for All-in-One Image Restoration
人工智能·深度学习·计算机视觉
CoovallyAIHub7 小时前
AAAI 2026这篇杰出论文说了什么?用LLM给CLIP换了个“聪明大脑”
深度学习·算法·计算机视觉
硅谷秋水8 小时前
REALM:用于机器人操作泛化能力的真实-仿真验证基准测试
人工智能·机器学习·计算机视觉·语言模型·机器人