Training - PyTorch Lightning 分布式训练的 global_step 参数 (accumulate_grad_batches)

欢迎关注我的CSDN:https://spike.blog.csdn.net/

本文地址:https://blog.csdn.net/caroline_wendy/article/details/137640653

在 PyTorch Lightning 中,pl.Traineraccumulate_grad_batches 参数允许在执行反向传播和优化器步骤之前,累积多个批次的梯度。这样,可以增加有效的批次大小,而不会增加内存开销。例如,如果设置 accumulate_grad_batches=8,则会在执行优化器的 .step() 方法之前,累积 8 个批次的梯度。

accumulate_grad_batchesglobal_step 的关系:

  1. global_step 会在每次调用优化器的 .step() 方法后递增。
  2. 使用梯度累积,global_step 增长小于 批次(batch) 的数量
  3. 多个批次贡献到 1 个 global_step 的更新中。

例如,如果 accumulate_grad_batches=8,那么每 8 个批次,只会增加 1 次 global_step,如果多卡,则 global_step 表示单卡的次数。日志,如下:

bash 复制代码
[INFO] [CL] global_step: 0, iter_step: 8
[INFO] [CL] global_step: 1, iter_step: 16

其中 pl.Trainer 的源码:

bash 复制代码
    trainer = pl.Trainer(
        accelerator="gpu",
        # ...
        accumulate_grad_batches=args.accumulate_grad,
        strategy=strategy,  # 多机多卡配置
        num_nodes=args.num_nodes,  # 节点数
        devices=1,  # 每个节点 GPU 卡数
    )

输出日志:

bash 复制代码
log = {'epoch': self.trainer.current_epoch, 'step': self.trainer.global_step}
wandb.log(log)
相关推荐
king王一帅7 分钟前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技3 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102164 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧4 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)4 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了5 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好5 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
智驱力人工智能5 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算
AI产品备案5 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记
AC赳赳老秦5 小时前
DeepSeek 私有化部署避坑指南:敏感数据本地化处理与合规性检测详解
大数据·开发语言·数据库·人工智能·自动化·php·deepseek