Training - PyTorch Lightning 分布式训练的 global_step 参数 (accumulate_grad_batches)

欢迎关注我的CSDN:https://spike.blog.csdn.net/

本文地址:https://blog.csdn.net/caroline_wendy/article/details/137640653

在 PyTorch Lightning 中,pl.Traineraccumulate_grad_batches 参数允许在执行反向传播和优化器步骤之前,累积多个批次的梯度。这样,可以增加有效的批次大小,而不会增加内存开销。例如,如果设置 accumulate_grad_batches=8,则会在执行优化器的 .step() 方法之前,累积 8 个批次的梯度。

accumulate_grad_batchesglobal_step 的关系:

  1. global_step 会在每次调用优化器的 .step() 方法后递增。
  2. 使用梯度累积,global_step 增长小于 批次(batch) 的数量
  3. 多个批次贡献到 1 个 global_step 的更新中。

例如,如果 accumulate_grad_batches=8,那么每 8 个批次,只会增加 1 次 global_step,如果多卡,则 global_step 表示单卡的次数。日志,如下:

bash 复制代码
[INFO] [CL] global_step: 0, iter_step: 8
[INFO] [CL] global_step: 1, iter_step: 16

其中 pl.Trainer 的源码:

bash 复制代码
    trainer = pl.Trainer(
        accelerator="gpu",
        # ...
        accumulate_grad_batches=args.accumulate_grad,
        strategy=strategy,  # 多机多卡配置
        num_nodes=args.num_nodes,  # 节点数
        devices=1,  # 每个节点 GPU 卡数
    )

输出日志:

bash 复制代码
log = {'epoch': self.trainer.current_epoch, 'step': self.trainer.global_step}
wandb.log(log)
相关推荐
CountingStars6192 分钟前
目标检测常用评估指标(metrics)
人工智能·目标检测·目标跟踪
tangjunjun-owen10 分钟前
第四节:GLM-4v-9b模型的tokenizer源码解读
人工智能·glm-4v-9b·多模态大模型教程
冰蓝蓝15 分钟前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
橙子小哥的代码世界22 分钟前
【计算机视觉基础CV-图像分类】01- 从历史源头到深度时代:一文读懂计算机视觉的进化脉络、核心任务与产业蓝图
人工智能·计算机视觉
新加坡内哥谈技术1 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
fanstuck2 小时前
Prompt提示工程上手指南(七)Prompt编写实战-基于智能客服问答系统下的Prompt编写
人工智能·数据挖掘·openai
lovelin+v175030409662 小时前
安全性升级:API接口在零信任架构下的安全防护策略
大数据·数据库·人工智能·爬虫·数据分析
唐小旭2 小时前
python3.6搭建pytorch环境
人工智能·pytorch·python
洛阳泰山2 小时前
MaxKB基于大语言模型和 RAG的开源知识库问答系统的快速部署教程
人工智能·语言模型·开源·rag·maxkb
程序猿阿伟2 小时前
《Java 优化秘籍:计算密集型 AI 任务加速指南》
java·开发语言·人工智能