Training - PyTorch Lightning 分布式训练的 global_step 参数 (accumulate_grad_batches)

欢迎关注我的CSDN:https://spike.blog.csdn.net/

本文地址:https://blog.csdn.net/caroline_wendy/article/details/137640653

在 PyTorch Lightning 中,pl.Traineraccumulate_grad_batches 参数允许在执行反向传播和优化器步骤之前,累积多个批次的梯度。这样,可以增加有效的批次大小,而不会增加内存开销。例如,如果设置 accumulate_grad_batches=8,则会在执行优化器的 .step() 方法之前,累积 8 个批次的梯度。

accumulate_grad_batchesglobal_step 的关系:

  1. global_step 会在每次调用优化器的 .step() 方法后递增。
  2. 使用梯度累积,global_step 增长小于 批次(batch) 的数量
  3. 多个批次贡献到 1 个 global_step 的更新中。

例如,如果 accumulate_grad_batches=8,那么每 8 个批次,只会增加 1 次 global_step,如果多卡,则 global_step 表示单卡的次数。日志,如下:

bash 复制代码
[INFO] [CL] global_step: 0, iter_step: 8
[INFO] [CL] global_step: 1, iter_step: 16

其中 pl.Trainer 的源码:

bash 复制代码
    trainer = pl.Trainer(
        accelerator="gpu",
        # ...
        accumulate_grad_batches=args.accumulate_grad,
        strategy=strategy,  # 多机多卡配置
        num_nodes=args.num_nodes,  # 节点数
        devices=1,  # 每个节点 GPU 卡数
    )

输出日志:

bash 复制代码
log = {'epoch': self.trainer.current_epoch, 'step': self.trainer.global_step}
wandb.log(log)
相关推荐
熊猫钓鱼>_>6 小时前
移动端开发技术选型报告:三足鼎立时代的开发者指南(2026年2月)
android·人工智能·ios·app·鸿蒙·cpu·移动端
想你依然心痛6 小时前
ModelEngine·AI 应用开发实战:从智能体到可视化编排的全栈实践
人工智能·智能体·ai应用·modelengine
KIKIiiiiiiii6 小时前
微信个人号API二次开发中的解决经验
java·人工智能·python·微信
哈哈你是真的厉害6 小时前
解构 AIGC 的“核动力”引擎:华为 CANN 如何撑起万亿参数的大模型时代
人工智能·aigc·cann
DeniuHe6 小时前
Pytorch中的直方图
pytorch
Ekehlaft6 小时前
这款国产 AI,让 Python 小白也能玩转编程
开发语言·人工智能·python·ai·aipy
哈__6 小时前
CANN多模型并发部署方案
人工智能·pytorch
予枫的编程笔记6 小时前
【Linux入门篇】Linux运维必学:Vim核心操作详解,告别编辑器依赖
linux·人工智能·linux运维·vim操作教程·程序员工具·编辑器技巧·新手学vim
慢半拍iii6 小时前
对比分析:ops-nn与传统深度学习框架算子的差异
人工智能·深度学习·ai·cann
心疼你的一切6 小时前
解构CANN仓库:AIGC API从底层逻辑到实战落地,解锁国产化AI生成算力
数据仓库·人工智能·深度学习·aigc·cann