【无标题】

机器学习第五次作业

6.1

由第一次检测:
P(⊕∣cancer)P(cancer)=0.0078P(⊕∣cancer)P(cancer)=0.0078P(⊕∣cancer)P(cancer)=0.0078
P(⊕∣¬cancer)P(¬cancer)=0.0298P(⊕∣\neg cancer)P(\neg cancer)=0.0298P(⊕∣¬cancer)P(¬cancer)=0.0298、

将第一次检测结果作为新的先验概率,归一化得到:
P(cancer∣⊕)=0.0078/0.0376=0.2074P(cancer∣⊕)=0.0078/0.0376=0.2074P(cancer∣⊕)=0.0078/0.0376=0.2074
P(¬cancer∣⊕)=0.0298/0.0376=0.7926P(\neg cancer∣⊕)=0.0298/0.0376=0.7926P(¬cancer∣⊕)=0.0298/0.0376=0.7926

第二次检测的后验概率:
P(cancer∣⊕,⊕)=P(⊕∣cancer)∗P(cancer∣⊕)=.098∗0.2074=0.2033P(cancer∣⊕,⊕)=P(⊕∣cancer)*P(cancer∣⊕)=.098*0.2074=0.2033P(cancer∣⊕,⊕)=P(⊕∣cancer)∗P(cancer∣⊕)=.098∗0.2074=0.2033
P(¬cancer∣⊕,⊕)=P(⊕∣¬cancer)∗P(¬cancer∣⊕)=0.03∗0.7926=0.0238P(\neg cancer∣⊕,⊕)=P(⊕∣\neg cancer)*P(\neg cancer∣⊕)=0.03*0.7926=0.0238P(¬cancer∣⊕,⊕)=P(⊕∣¬cancer)∗P(¬cancer∣⊕)=0.03∗0.7926=0.0238

归一化得:
P(cancer∣⊕,⊕)=0.2033/0.2271=0.8952P(cancer∣⊕,⊕)=0.2033/0.2271=0.8952P(cancer∣⊕,⊕)=0.2033/0.2271=0.8952
P(¬cancer∣⊕,⊕)=0.0238/0.2271=0.1048P(\neg cancer∣⊕,⊕)=0.0238/0.2271=0.1048P(¬cancer∣⊕,⊕)=0.0238/0.2271=0.1048

6.2

根据贝叶斯公式:
P(cancer∣⊕)=P(⊕∣cancer)∗P(cancer)P(⊕)=P(⊕∣cancer)∗P(cancer)P(⊕∣cancer)P(cancer)+P(⊕∣¬cancer)P(¬cancer)=1P(⊕∣cancer)P(cancer)+P(⊕∣¬cancer)P(¬cancer)P(⊕∣cancer)∗P(cancer)=11+P(⊕∣¬cancer)P(¬cancer)P(⊕∣cancer)∗P(cancer)P(cancer∣⊕)=\frac{P(⊕∣cancer)*P(cancer)}{P(⊕)}\\=\frac{P(⊕∣cancer)*P(cancer)}{P(⊕∣cancer)P(cancer)+P(⊕∣\neg cancer)P(\neg cancer)}\\=\frac{1}{\frac{P(⊕∣cancer)P(cancer)+P(⊕∣\neg cancer)P(\neg cancer)}{P(⊕∣cancer)*P(cancer)}}\\=\frac{1}{1+\frac{P(⊕∣\neg cancer)P(\neg cancer)}{P(⊕∣cancer)*P(cancer)}}P(cancer∣⊕)=P(⊕)P(⊕∣cancer)∗P(cancer)=P(⊕∣cancer)P(cancer)+P(⊕∣¬cancer)P(¬cancer)P(⊕∣cancer)∗P(cancer)=P(⊕∣cancer)∗P(cancer)P(⊕∣cancer)P(cancer)+P(⊕∣¬cancer)P(¬cancer)1=1+P(⊕∣cancer)∗P(cancer)P(⊕∣¬cancer)P(¬cancer)1

而将P(⊕∣cancer)P(cancer)P(⊕∣cancer)P(cancer)P(⊕∣cancer)P(cancer)和P(⊕∣¬cancer)P(¬cancer)P(⊕∣\neg cancer)P(\neg cancer)P(⊕∣¬cancer)P(¬cancer) 归一化,得到的正是P(⊕∣cancer)P(cancer)P(⊕)\frac{P(⊕∣cancer)P(cancer)}{P(⊕)}P(⊕)P(⊕∣cancer)P(cancer)和P(⊕∣¬cancer)P(¬cancer)P(⊕)\frac{P(⊕∣\neg cancer)P(\neg cancer)}{P(⊕)}P(⊕)P(⊕∣¬cancer)P(¬cancer),而前者正是P(cancer∣⊕)P(cancer∣⊕)P(cancer∣⊕),因此这样是正确的

相关推荐
tap.AI几秒前
RAG系列(一) 架构基础与原理
人工智能·架构
式51613 分钟前
线性代数(八)非齐次方程组的解的结构
线性代数·算法·机器学习
北邮刘老师13 分钟前
【智能体互联协议解析】北邮ACPs协议和代码与智能体互联AIP标准的关系
人工智能·大模型·智能体·智能体互联网
亚马逊云开发者24 分钟前
使用Amazon Q Developer CLI快速构建市场分析智能体
人工智能
Coding茶水间29 分钟前
基于深度学习的非机动车头盔检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
Rose sait40 分钟前
【环境配置】Linux配置虚拟环境pytorch
linux·人工智能·python
福客AI智能客服44 分钟前
从被动响应到主动赋能:家具行业客服机器人的革新路径
大数据·人工智能
司南OpenCompass1 小时前
衡量AI真实科研能力!司南科学智能评测上线
人工智能·多模态模型·大模型评测·司南评测
罗宇超MS1 小时前
如何看待企业自建AI知识库?
人工智能·alm
橘颂TA1 小时前
【剑斩OFFER】算法的暴力美学——翻转对
算法·排序算法·结构与算法