【无标题】

机器学习第五次作业

6.1

由第一次检测:
P(⊕∣cancer)P(cancer)=0.0078P(⊕∣cancer)P(cancer)=0.0078P(⊕∣cancer)P(cancer)=0.0078
P(⊕∣¬cancer)P(¬cancer)=0.0298P(⊕∣\neg cancer)P(\neg cancer)=0.0298P(⊕∣¬cancer)P(¬cancer)=0.0298、

将第一次检测结果作为新的先验概率,归一化得到:
P(cancer∣⊕)=0.0078/0.0376=0.2074P(cancer∣⊕)=0.0078/0.0376=0.2074P(cancer∣⊕)=0.0078/0.0376=0.2074
P(¬cancer∣⊕)=0.0298/0.0376=0.7926P(\neg cancer∣⊕)=0.0298/0.0376=0.7926P(¬cancer∣⊕)=0.0298/0.0376=0.7926

第二次检测的后验概率:
P(cancer∣⊕,⊕)=P(⊕∣cancer)∗P(cancer∣⊕)=.098∗0.2074=0.2033P(cancer∣⊕,⊕)=P(⊕∣cancer)*P(cancer∣⊕)=.098*0.2074=0.2033P(cancer∣⊕,⊕)=P(⊕∣cancer)∗P(cancer∣⊕)=.098∗0.2074=0.2033
P(¬cancer∣⊕,⊕)=P(⊕∣¬cancer)∗P(¬cancer∣⊕)=0.03∗0.7926=0.0238P(\neg cancer∣⊕,⊕)=P(⊕∣\neg cancer)*P(\neg cancer∣⊕)=0.03*0.7926=0.0238P(¬cancer∣⊕,⊕)=P(⊕∣¬cancer)∗P(¬cancer∣⊕)=0.03∗0.7926=0.0238

归一化得:
P(cancer∣⊕,⊕)=0.2033/0.2271=0.8952P(cancer∣⊕,⊕)=0.2033/0.2271=0.8952P(cancer∣⊕,⊕)=0.2033/0.2271=0.8952
P(¬cancer∣⊕,⊕)=0.0238/0.2271=0.1048P(\neg cancer∣⊕,⊕)=0.0238/0.2271=0.1048P(¬cancer∣⊕,⊕)=0.0238/0.2271=0.1048

6.2

根据贝叶斯公式:
P(cancer∣⊕)=P(⊕∣cancer)∗P(cancer)P(⊕)=P(⊕∣cancer)∗P(cancer)P(⊕∣cancer)P(cancer)+P(⊕∣¬cancer)P(¬cancer)=1P(⊕∣cancer)P(cancer)+P(⊕∣¬cancer)P(¬cancer)P(⊕∣cancer)∗P(cancer)=11+P(⊕∣¬cancer)P(¬cancer)P(⊕∣cancer)∗P(cancer)P(cancer∣⊕)=\frac{P(⊕∣cancer)*P(cancer)}{P(⊕)}\\=\frac{P(⊕∣cancer)*P(cancer)}{P(⊕∣cancer)P(cancer)+P(⊕∣\neg cancer)P(\neg cancer)}\\=\frac{1}{\frac{P(⊕∣cancer)P(cancer)+P(⊕∣\neg cancer)P(\neg cancer)}{P(⊕∣cancer)*P(cancer)}}\\=\frac{1}{1+\frac{P(⊕∣\neg cancer)P(\neg cancer)}{P(⊕∣cancer)*P(cancer)}}P(cancer∣⊕)=P(⊕)P(⊕∣cancer)∗P(cancer)=P(⊕∣cancer)P(cancer)+P(⊕∣¬cancer)P(¬cancer)P(⊕∣cancer)∗P(cancer)=P(⊕∣cancer)∗P(cancer)P(⊕∣cancer)P(cancer)+P(⊕∣¬cancer)P(¬cancer)1=1+P(⊕∣cancer)∗P(cancer)P(⊕∣¬cancer)P(¬cancer)1

而将P(⊕∣cancer)P(cancer)P(⊕∣cancer)P(cancer)P(⊕∣cancer)P(cancer)和P(⊕∣¬cancer)P(¬cancer)P(⊕∣\neg cancer)P(\neg cancer)P(⊕∣¬cancer)P(¬cancer) 归一化,得到的正是P(⊕∣cancer)P(cancer)P(⊕)\frac{P(⊕∣cancer)P(cancer)}{P(⊕)}P(⊕)P(⊕∣cancer)P(cancer)和P(⊕∣¬cancer)P(¬cancer)P(⊕)\frac{P(⊕∣\neg cancer)P(\neg cancer)}{P(⊕)}P(⊕)P(⊕∣¬cancer)P(¬cancer),而前者正是P(cancer∣⊕)P(cancer∣⊕)P(cancer∣⊕),因此这样是正确的

相关推荐
初恋叫萱萱2 分钟前
CANN 生态中的图优化引擎:深入 `ge` 项目实现模型自动调优
人工智能
不爱学英文的码字机器3 分钟前
深度解读CANN生态核心仓库——catlass,打造高效可扩展的分类器技术底座
人工智能·cann
Kiyra4 分钟前
作为后端开发你不得不知的 AI 知识——RAG
人工智能·语言模型
共享家95277 分钟前
Vibe Coding 与 LangChain、LangGraph 的协同进化
人工智能
dvlinker9 分钟前
2026远程桌面安全白皮书:ToDesk/TeamViewer/向日葵核心安全性与合规性横向测评
人工智能
2的n次方_11 分钟前
CANN ascend-transformer-boost 深度解析:针对大模型的高性能融合算子库与算力优化机制
人工智能·深度学习·transformer
熊猫_豆豆11 分钟前
YOLOP车道检测
人工智能·python·算法
nimadan1212 分钟前
**热门短剧小说扫榜工具2025推荐,精准捕捉爆款趋势与流量
人工智能·python
qq_124987075315 分钟前
基于JavaWeb的大学生房屋租赁系统(源码+论文+部署+安装)
java·数据库·人工智能·spring boot·计算机视觉·毕业设计·计算机毕业设计
杜子不疼.16 分钟前
CANN算子基础框架库opbase的算子开发与扩展机制深度解析
人工智能