【无标题】

机器学习第五次作业

6.1

由第一次检测:
P(⊕∣cancer)P(cancer)=0.0078P(⊕∣cancer)P(cancer)=0.0078P(⊕∣cancer)P(cancer)=0.0078
P(⊕∣¬cancer)P(¬cancer)=0.0298P(⊕∣\neg cancer)P(\neg cancer)=0.0298P(⊕∣¬cancer)P(¬cancer)=0.0298、

将第一次检测结果作为新的先验概率,归一化得到:
P(cancer∣⊕)=0.0078/0.0376=0.2074P(cancer∣⊕)=0.0078/0.0376=0.2074P(cancer∣⊕)=0.0078/0.0376=0.2074
P(¬cancer∣⊕)=0.0298/0.0376=0.7926P(\neg cancer∣⊕)=0.0298/0.0376=0.7926P(¬cancer∣⊕)=0.0298/0.0376=0.7926

第二次检测的后验概率:
P(cancer∣⊕,⊕)=P(⊕∣cancer)∗P(cancer∣⊕)=.098∗0.2074=0.2033P(cancer∣⊕,⊕)=P(⊕∣cancer)*P(cancer∣⊕)=.098*0.2074=0.2033P(cancer∣⊕,⊕)=P(⊕∣cancer)∗P(cancer∣⊕)=.098∗0.2074=0.2033
P(¬cancer∣⊕,⊕)=P(⊕∣¬cancer)∗P(¬cancer∣⊕)=0.03∗0.7926=0.0238P(\neg cancer∣⊕,⊕)=P(⊕∣\neg cancer)*P(\neg cancer∣⊕)=0.03*0.7926=0.0238P(¬cancer∣⊕,⊕)=P(⊕∣¬cancer)∗P(¬cancer∣⊕)=0.03∗0.7926=0.0238

归一化得:
P(cancer∣⊕,⊕)=0.2033/0.2271=0.8952P(cancer∣⊕,⊕)=0.2033/0.2271=0.8952P(cancer∣⊕,⊕)=0.2033/0.2271=0.8952
P(¬cancer∣⊕,⊕)=0.0238/0.2271=0.1048P(\neg cancer∣⊕,⊕)=0.0238/0.2271=0.1048P(¬cancer∣⊕,⊕)=0.0238/0.2271=0.1048

6.2

根据贝叶斯公式:
P(cancer∣⊕)=P(⊕∣cancer)∗P(cancer)P(⊕)=P(⊕∣cancer)∗P(cancer)P(⊕∣cancer)P(cancer)+P(⊕∣¬cancer)P(¬cancer)=1P(⊕∣cancer)P(cancer)+P(⊕∣¬cancer)P(¬cancer)P(⊕∣cancer)∗P(cancer)=11+P(⊕∣¬cancer)P(¬cancer)P(⊕∣cancer)∗P(cancer)P(cancer∣⊕)=\frac{P(⊕∣cancer)*P(cancer)}{P(⊕)}\\=\frac{P(⊕∣cancer)*P(cancer)}{P(⊕∣cancer)P(cancer)+P(⊕∣\neg cancer)P(\neg cancer)}\\=\frac{1}{\frac{P(⊕∣cancer)P(cancer)+P(⊕∣\neg cancer)P(\neg cancer)}{P(⊕∣cancer)*P(cancer)}}\\=\frac{1}{1+\frac{P(⊕∣\neg cancer)P(\neg cancer)}{P(⊕∣cancer)*P(cancer)}}P(cancer∣⊕)=P(⊕)P(⊕∣cancer)∗P(cancer)=P(⊕∣cancer)P(cancer)+P(⊕∣¬cancer)P(¬cancer)P(⊕∣cancer)∗P(cancer)=P(⊕∣cancer)∗P(cancer)P(⊕∣cancer)P(cancer)+P(⊕∣¬cancer)P(¬cancer)1=1+P(⊕∣cancer)∗P(cancer)P(⊕∣¬cancer)P(¬cancer)1

而将P(⊕∣cancer)P(cancer)P(⊕∣cancer)P(cancer)P(⊕∣cancer)P(cancer)和P(⊕∣¬cancer)P(¬cancer)P(⊕∣\neg cancer)P(\neg cancer)P(⊕∣¬cancer)P(¬cancer) 归一化,得到的正是P(⊕∣cancer)P(cancer)P(⊕)\frac{P(⊕∣cancer)P(cancer)}{P(⊕)}P(⊕)P(⊕∣cancer)P(cancer)和P(⊕∣¬cancer)P(¬cancer)P(⊕)\frac{P(⊕∣\neg cancer)P(\neg cancer)}{P(⊕)}P(⊕)P(⊕∣¬cancer)P(¬cancer),而前者正是P(cancer∣⊕)P(cancer∣⊕)P(cancer∣⊕),因此这样是正确的

相关推荐
Hcoco_me20 分钟前
RNN(循环神经网络)
人工智能·rnn·深度学习
vyuvyucd20 分钟前
C++引用:高效编程的别名利器
算法
踏浪无痕28 分钟前
AI 时代架构师如何有效成长?
人工智能·后端·架构
AI 智能服务28 分钟前
第6课__本地工具调用(文件操作)
服务器·人工智能·windows·php
鱼跃鹰飞1 小时前
Leetcode1891:割绳子
数据结构·算法
️停云️1 小时前
【滑动窗口与双指针】不定长滑动窗口
c++·算法·leetcode·剪枝·哈希
clorisqqq1 小时前
人工智能现代方法笔记 第1章 绪论(1/2)
人工智能·笔记
kisshuan123961 小时前
YOLO11-RepHGNetV2实现甘蔗田杂草与作物区域识别详解
人工智能·计算机视觉·目标跟踪
焦耳热科技前沿1 小时前
北京科技大学/理化所ACS Nano:混合价态Cu₂Sb金属间化合物实现高效尿素电合成
大数据·人工智能·自动化·能源·材料工程
C+-C资深大佬1 小时前
Creo 11.0 全功能解析:多体设计 + 仿真制造,机械设计效率翻倍下载安装
人工智能