【无标题】

机器学习第五次作业

6.1

由第一次检测:
P(⊕∣cancer)P(cancer)=0.0078P(⊕∣cancer)P(cancer)=0.0078P(⊕∣cancer)P(cancer)=0.0078
P(⊕∣¬cancer)P(¬cancer)=0.0298P(⊕∣\neg cancer)P(\neg cancer)=0.0298P(⊕∣¬cancer)P(¬cancer)=0.0298、

将第一次检测结果作为新的先验概率,归一化得到:
P(cancer∣⊕)=0.0078/0.0376=0.2074P(cancer∣⊕)=0.0078/0.0376=0.2074P(cancer∣⊕)=0.0078/0.0376=0.2074
P(¬cancer∣⊕)=0.0298/0.0376=0.7926P(\neg cancer∣⊕)=0.0298/0.0376=0.7926P(¬cancer∣⊕)=0.0298/0.0376=0.7926

第二次检测的后验概率:
P(cancer∣⊕,⊕)=P(⊕∣cancer)∗P(cancer∣⊕)=.098∗0.2074=0.2033P(cancer∣⊕,⊕)=P(⊕∣cancer)*P(cancer∣⊕)=.098*0.2074=0.2033P(cancer∣⊕,⊕)=P(⊕∣cancer)∗P(cancer∣⊕)=.098∗0.2074=0.2033
P(¬cancer∣⊕,⊕)=P(⊕∣¬cancer)∗P(¬cancer∣⊕)=0.03∗0.7926=0.0238P(\neg cancer∣⊕,⊕)=P(⊕∣\neg cancer)*P(\neg cancer∣⊕)=0.03*0.7926=0.0238P(¬cancer∣⊕,⊕)=P(⊕∣¬cancer)∗P(¬cancer∣⊕)=0.03∗0.7926=0.0238

归一化得:
P(cancer∣⊕,⊕)=0.2033/0.2271=0.8952P(cancer∣⊕,⊕)=0.2033/0.2271=0.8952P(cancer∣⊕,⊕)=0.2033/0.2271=0.8952
P(¬cancer∣⊕,⊕)=0.0238/0.2271=0.1048P(\neg cancer∣⊕,⊕)=0.0238/0.2271=0.1048P(¬cancer∣⊕,⊕)=0.0238/0.2271=0.1048

6.2

根据贝叶斯公式:
P(cancer∣⊕)=P(⊕∣cancer)∗P(cancer)P(⊕)=P(⊕∣cancer)∗P(cancer)P(⊕∣cancer)P(cancer)+P(⊕∣¬cancer)P(¬cancer)=1P(⊕∣cancer)P(cancer)+P(⊕∣¬cancer)P(¬cancer)P(⊕∣cancer)∗P(cancer)=11+P(⊕∣¬cancer)P(¬cancer)P(⊕∣cancer)∗P(cancer)P(cancer∣⊕)=\frac{P(⊕∣cancer)*P(cancer)}{P(⊕)}\\=\frac{P(⊕∣cancer)*P(cancer)}{P(⊕∣cancer)P(cancer)+P(⊕∣\neg cancer)P(\neg cancer)}\\=\frac{1}{\frac{P(⊕∣cancer)P(cancer)+P(⊕∣\neg cancer)P(\neg cancer)}{P(⊕∣cancer)*P(cancer)}}\\=\frac{1}{1+\frac{P(⊕∣\neg cancer)P(\neg cancer)}{P(⊕∣cancer)*P(cancer)}}P(cancer∣⊕)=P(⊕)P(⊕∣cancer)∗P(cancer)=P(⊕∣cancer)P(cancer)+P(⊕∣¬cancer)P(¬cancer)P(⊕∣cancer)∗P(cancer)=P(⊕∣cancer)∗P(cancer)P(⊕∣cancer)P(cancer)+P(⊕∣¬cancer)P(¬cancer)1=1+P(⊕∣cancer)∗P(cancer)P(⊕∣¬cancer)P(¬cancer)1

而将P(⊕∣cancer)P(cancer)P(⊕∣cancer)P(cancer)P(⊕∣cancer)P(cancer)和P(⊕∣¬cancer)P(¬cancer)P(⊕∣\neg cancer)P(\neg cancer)P(⊕∣¬cancer)P(¬cancer) 归一化,得到的正是P(⊕∣cancer)P(cancer)P(⊕)\frac{P(⊕∣cancer)P(cancer)}{P(⊕)}P(⊕)P(⊕∣cancer)P(cancer)和P(⊕∣¬cancer)P(¬cancer)P(⊕)\frac{P(⊕∣\neg cancer)P(\neg cancer)}{P(⊕)}P(⊕)P(⊕∣¬cancer)P(¬cancer),而前者正是P(cancer∣⊕)P(cancer∣⊕)P(cancer∣⊕),因此这样是正确的

相关推荐
CoovallyAIHub1 天前
Arm重磅加码边缘AI!Flexible Access开放v9平台,实现高端算力普惠
深度学习·算法·计算机视觉
louisdlee.1 天前
树状数组维护DP——前缀最大值
数据结构·c++·算法·dp
飞哥数智坊1 天前
打造我的 AI 开发团队(四):在 Cursor 里跑通 bmad
人工智能·ai编程
aneasystone本尊1 天前
重温 Java 21 学习笔记
人工智能
zandy10111 天前
架构解析:衡石科技如何基于AI+Data Agent重构智能数据分析平台
人工智能·科技·架构
Q741_1471 天前
C++ 分治 归并排序 归并排序VS快速排序 力扣 912. 排序数组 题解 每日一题
c++·算法·leetcode·归并排序·分治
golang学习记1 天前
免费解锁 Cursor AI 全功能:4 种开发者私藏方案揭秘
人工智能
victory04311 天前
K8S 安装 部署 文档
算法·贪心算法·kubernetes
图扑软件1 天前
热力图可视化为何被广泛应用?| 图扑数字孪生
大数据·人工智能·信息可视化·数字孪生·可视化·热力图·电力能源
qq_436962181 天前
AI驱动数据分析革新:奥威BI一键生成智能报告
人工智能·信息可视化·数据分析