数据挖掘与机器学习

一. 机器学习的种类

1. 有监督的机器学习 :

分类 :

  • KNN 最近邻
  • 逻辑回归 - 朴素贝叶斯估计
  • SVM 线性 或 非线性 优化模型
  • 决策树模型 - 随机森林 - 其它集成模型
  • lightGBM - XGBOOST

回归:

  • 线性
  • 非线性
  • 加权平均回归

2.无监督的机器学习 :

  • 聚类
  • 关联
  • 特征处理

二. KNN ( K最近邻 )

复制代码
argmax()  # 只返回索引

特征值(Features):(特征数据必须是2维数据)

特征值是用来描述样本的属性或特征的值。在KNN中,每个样本都被表示为一个特征向量,其中每个特征对应向量中的一个维度。例如,在一个二维空间中,特征向量可以由两个特征值构成,分别表示样本在X轴和Y轴上的坐标。
2.

标签(Labels)

标签是我们希望预测的值,或者是我们希望将样本分类到的类别。在分类问题中,每个样本都有一个类别标签,而在回归问题中,标签通常是一个连续的数值。在KNN中,我们使用已知的特征值和标签构建模型,然后根据新的特征值预测或分类其对应的标签。

python 复制代码
np.bincount([1,1,2,2,2,2,4,4,4,4]) # 看下标为几的出现几次

下标为0的 没有出现 0
下标为1,数字也为1的出现2次
下标为2 数字也为2的出现4次
下标为3,数字为3 为0次  
下标为4,数字为3 为4次 
答案是 (0,2,4,0,4)

三. KNN运用(字符识别、文本分类、图像识别),通过你的邻居判断你是什么类别

python 复制代码
# 选几个邻居 进行分类 
sklearn.neighbors.KNeighborsClassfier(n_neighbors=5)
 n_neighbors = 5 是默认的

#获取数据
x = [[1],[2],[0],[0]]
y = [1,1,0,0]

# 机器学习
# 1. 实例化一个训练模型
estimator = KNeighborsClassfier(n_neighbors=2)

2. 调用fit方法进行训练
estimator.fit(x,y)

3. 预测其他值
ret = estimator.predict([-1])
print(ret)

四. K值的选取

  • K值过小: 过拟合,容易受异常点影响, 因为用较小的领域中训练实例进行预测
  • k值过大 : 欠拟合,容易受到样本均衡的问题
相关推荐
LO嘉嘉VE1 小时前
学习笔记十:多分类学习
机器学习
xuehaikj2 小时前
【实战案例】基于dino-4scale_r50_8xb2-36e_coco的棉田叶片病害识别与分类项目详解
人工智能·数据挖掘
月下倩影时2 小时前
视觉学习篇——理清机器学习:分类、流程与技术家族的关系
学习·机器学习·分类
算法与编程之美2 小时前
探索不同的优化器、损失函数、batch_size对分类精度影响
人工智能·机器学习·计算机视觉·分类·batch
Blossom.1187 小时前
移动端部署噩梦终结者:动态稀疏视觉Transformer的量化实战
java·人工智能·python·深度学习·算法·机器学习·transformer
月下倩影时8 小时前
视觉进阶篇——机器学习训练过程(手写数字识别,量大管饱需要耐心)
人工智能·学习·机器学习
q***318311 小时前
爬虫基础之爬取某基金网站+数据分析
爬虫·数据挖掘·数据分析
生信大表哥12 小时前
贝叶斯共识聚类(BCC)
机器学习·数据挖掘·聚类
谅望者15 小时前
数据分析笔记07:Python编程语言介绍
大数据·数据库·笔记·python·数据挖掘·数据分析
Cathy Bryant16 小时前
信息论(五):联合熵与条件熵
人工智能·笔记·机器学习·数学建模·概率论