ChatGPT与Python-GEE融合,遥感云大数据分析、管理与可视化

掌握Earth Engine的实际应用能力,以Python为基础,结合实例讲解平台搭建、影像数据分析、经典应用案例、本地与云端数据管理,以及云端数据论文出版级可视化等技能。

为提高教学质量,将融入ChatGPT 4、Claude Opus、Gemini、文心一言等AI大模型辅助教学,为学员提供个性化建议和指导,深化内容掌握,并为未来自助学习提供高效的个性化体验。最后,还将结合多年AI使用经验,深入分享AI大模型在科研辅助方面的多项实用技巧,包括文献查找、分析总结、论文撰写、图表解读、语言润色等,以助力科研人员在学术研究中取得更大突破并满足国际交流的需求。

第一章 理论基础

1.Earth Engine平台及应用、主要数据资源介绍

2.Earth Engine遥感云重要概念、数据类型与对象等

3.JavaScript与Python遥感云编程比较与选择

4.Python基础(语法、数据类型与程序控制结构、函数及类与对象等)

5.常用Python软件包((pandas、numpy、os等)介绍及基本功能演示(Excel/csv数据文件读取与数据处理、目录操作等)

6.JavaScript和Python遥感云API差异,学习方法及资源推荐

7.ChatGPT、Claude、Gemini、文心一言等AI大模型介绍及其遥感领域中的应用

第二章 开发环境搭建

1.本地端与云端Python遥感云开发环境介绍

2.本地端开发环境搭建

①Anaconda安装,pip/conda软件包安装方法和虚拟环境创建等;

②earthengine-api、geemap等必备软件包安装;

③遥感云本地端授权管理;

④Jupyter Notebook/Visual Studio Code安装及运行调试。

3.云端Colab开发环境搭建

4.geemap介绍及常用功能演示

5.ChatGPT 4、Claude Opus、Gemini、文心一言等AI大模型使用演示

第三章 遥感大数据处理基础与AI大模型交互

1.遥感云平台影像数据分析处理流程介绍:介绍遥感云平台影像数据分析处理流程的基本框架,包括数据获取、数据预处理、算法开发、可视化等。

2.要素和影像等对象显示和属性字段探索:介绍如何在遥感云平台上显示和探索要素和影像等对象的属性字段,包括如何选择要素和影像对象、查看属性信息、筛选数据等。

3.影像/要素集的时间、空间和属性过滤方法:介绍如何对影像/要素集进行时间、空间和属性过滤,包括如何选择时间段、地理区域和属性条件,以实现更精确的数据分析。

4.波段运算、条件运算、植被指数计算、裁剪和镶嵌等:介绍如何在遥感云平台上进行波段运算、条件运算、植被指数计算、裁剪和镶嵌等操作,以实现更深入的数据分析。

5.Landsat/Sentinel-2等常用光学影像去云:介绍如何在遥感云平台上使用不同方法去除Landsat/Sentinel-2等常用光学影像中的云,以提高影像数据质量。

6.影像与要素集的迭代循环:介绍如何使用遥感云平台的迭代循环功能对影像和要素集进行批量处理,以提高数据分析效率。

7.影像数据整合(Reducer):介绍如何使用遥感云平台的Reducer功能将多个影像数据整合成一个数据集,以方便后续数据分析。

8.邻域分析与空间统计:介绍如何在遥感云平台上进行邻域分析和空间统计,以获取更深入的空间信息。

9.常见错误与代码优化:介绍遥感云平台数据分析过程中常见的错误和如何进行代码优化,以提高数据分析效率和精度。

10.Python遥感云数据分析专属包构建:介绍如何使用Python在遥感云平台上构建数据分析专属包,以方便多次使用和分享分析代码。

第四章 典型案例操作实践与AI大模型交互

11.机器学习分类算法案例:本案例联合Landsat等长时间序列影像和机器学习算法展示国家尺度的基本遥感分类过程。具体内容包括研究区影像统计、空间分层随机抽样、样本随机切分、时间序列影像预处理和合成、机器学习算法应用、分类后处理和精度评估等方面。

12.决策树森林分类算法案例:本案例联合L波段雷达和Landsat光学时间序列影像,使用决策树分类算法提取指定地区2007-2020年度森林分布图,并与JAXA年度森林产品进行空间比较。案例涉及多源数据联合使用、决策树分类算法构建、阈值动态优化、分类结果空间分析等方面。

13.洪涝灾害监测案例:本案例基于Sentinel-1 C波段雷达等影像,对省级尺度的特大暴雨灾害进行监测。案例内容包括Sentinel-1 C影像处理、多种水体识别算法构建、影像差异分析以及结果可视化等方面。

14.干旱遥感监测案例:本案例使用40年历史的卫星遥感降雨数据产品如CHIRPS来监测省级尺度的特大干旱情况。案例内容包括气象数据基本处理、年和月尺度数据整合、长期平均值LPA/偏差计算,以及数据结果可视化等方面。

15.物候特征分析案例:本案例基于Landsat和MODIS等时间序列影像,通过植被指数变化分析典型地表植被多年的物候差异(样点尺度)和大尺度(如中国)的物候空间变化特征。案例内容包括时间序列影像合成、影像平滑(Smoothing)与间隙填充(Gap-filling)、结果可视化等方面。

16.森林植被健康状态监测案例:本案例利用20年的MODIS植被指数,对选定区域的森林进行长期监测,并分析森林植被的绿化或褐变情况。涉及影像的连接和合成、趋势分析、空间统计以及可视化等方法。

17.生态环境质量动态监测案例:该案例使用RSEI遥感生态指数和Landsat系列影像,对选定城市的生态状况进行快速监测。主要涉及的技术包括植被指数的计算、地表温度的提取、数据的归一化、主成分PCA分析、RSEI生态指数的构建以及结果的可视化等。

第五章 输入输出及数据资产高效管理与AI大模型交互

1.本地数据与云端交互:介绍如何将本地端csv、kml、矢量和栅格数据与云端数据相互转换,并讲解数据导出的方法。

2.服务器端数据批量下载:包括直接本地下载、影像集批量下载,以及如何快速下载大尺度和长时间序列数据产品,例如全球森林产品和20年的MODIS数据产品等。

3.本地端数据上传与属性设置:包括earthengine命令使用,介绍如何上传少量本地端矢量与栅格数据并设置属性(小文件),以及如何批量上传数据并自动设置属性,还将介绍如何使用快速上传技巧上传超大影像文件,例如国产高分影像。

4.个人数据资产管理:介绍如何使用Python和earthengine命令行来管理个人数据资产,包括创建、删除、移动、重命名等操作,同时还会讲解如何批量取消上传/下载任务。

第六章 云端数据论文出版级可视化与AI大模型交互

1.Python可视化及主要软件包简介:介绍matplotlib和seaborn可视化程序包,讲解基本图形概念、图形构成以及快速绘制常用图形等内容。

2.研究区地形及样地分布图绘制:结合本地或云端矢量文件、云端地形数据等,绘制研究区示意图。涉及绘图流程、中文显示、配色美化等内容,还会介绍cpt-city精美调色板palette在线下载与本地端应用等。

3.研究区域影像覆盖统计和绘图:对指定区域的Landsat和Sentinel等系列影像的覆盖数量、无云影像覆盖情况进行统计,绘制区域影像统计图或像元级无云影像覆盖专题图。

4.样本光谱特征与物候特征等分析绘图:快速绘制不同类型样地的光谱和物候特征,动态下载并整合样点过去30年缩略图(thumbnails)和植被指数时间序列等。

5.分类结果专题图绘制及时空动态延时摄影Timelapse制作:单幅或多幅分类专题图绘制及配色美化,制作土地利用变化清晰的Timelapse,还会介绍动画文字添加等内容。

6.分类结果面积统计与绘图:基于云端的分类结果和矢量边界文件,统计不同区域不同地类面积,提取统计结果,以不同图形展示统计面积;制作土地利用变化统计绘图等。

第七章 AI大模型与科研辅助经验分享

1.文献总结:本部分将演示AI如何帮助研究人员高效提取文献要点,包括快速识别关键变量、研究方法和主要发现,旨在提升文献审阅的效率和质量。

2.文献查找:学习如何利用AI工具从海量数据中筛选和推荐与研究议题相关的论文,从而加速文献回顾的过程并确保研究的全面性。

3.框架生成:本节将指导如何运用AI工具构建科研论文的大纲框架,并提供结构和逻辑的修改建议,以加强论文的条理性和说服力。

4.图表生文:介绍AI如何辅助解读复杂的科研数据和图表,并将这些信息融入论文撰写中,增强论文的数据支撑力和论证的准确性。

5.中译英提升:探讨AI翻译工具如何帮助研究者将中文科研材料准确、流畅地转换为英文,满足国际学术交流的需求。

6.中英文润色:通过AI工具优化中文和英文论文的语言表达和学术措辞,提升论文的整体质量,使其更符合专业的学术标准和出版要求。

注:请提前自备电脑及安装所需软件


更多应用

GEE入门学习,遥感云大数据分析、管理与可视化以及在林业应用丨灾害、水体与湿地领域应用丨GPT模型应用-CSDN博客文章浏览阅读2.9k次,点赞7次,收藏28次。近年来遥感技术得到了突飞猛进的发展,航天、航空、临近空间等多遥感平台不断增加,数据的空间、时间、光谱分辨率不断提高,数据量猛增,遥感数据已经越来越具有大数据特征。遥感大数据的出现为相关研究提供了前所未有的机遇,同时如何处理好这些数据也提出了巨大的挑战。传统的工作站和服务器已经无法胜任大区域、多尺度海量遥感数据处理的需要。_gee入门https://blog.csdn.net/WangYan2022/article/details/131678440?spm=1001.2014.3001.5502①ChatGPT深度科研应用、数据分析及机器学习、AI绘图与高效论文撰写

ChatGPT深度科研应用、数据分析及机器学习、AI绘图与高效论文撰写-CSDN博客文章浏览阅读813次,点赞22次,收藏25次。掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM神经网络、YOLO目标检测、自编码器等)的基本原理及Python、PyTorch代码实现方法。https://blog.csdn.net/WangYan2022/article/details/137681275?spm=1001.2014.3001.5502②成像光谱遥感技术中的AI革命:ChatGPT在遥感领域中的应用

AI引领遥感新纪元:ChatGPT如何重塑成像光谱遥感技术?-CSDN博客文章浏览阅读650次,点赞9次,收藏14次。了解应用人工智能技术来改变遥感科学研究和应用的可能性。突出了人工智能和遥感科学的融合,展示了我们在理解地球和与地球互动方面取得重大进展的潜力。这是一次探索、技能提升和实际应用的旅程,为学习者站在这场技术革命的前沿奠定基础。https://blog.csdn.net/weixin_46747075/article/details/137671721?spm=1001.2014.3001.5501③ChatGPT在大气科学领域建模、数据分析、可视化与资源评估中的高效应用及论文写作

④AI大语言模型GPT & R生态环境领域数据统计分析

从GPT入门,到R语言基础与作图、回归模型分析、混合效应模型、多元统计分析及结构方程模型、Meta分析、随机森林模型及贝叶斯回归分析综合应用等专题及实战案例_gpt3.0写r语言代码-CSDN博客文章浏览阅读1k次,点赞27次,收藏15次。GPT大语言模型在助力利用R语言开展数据统计分析方面有着令人遐想的广阔空间。然而,生态环境领域数据往往具有高度的异质性和复杂性,这要求分析者不仅要有扎实的统计学基础,还需要能够灵活运用各种统计模型和方法。GPT在这方面展现出巨大的潜力,它不仅能够帮助研究者理解和选择合适的统计模型,还能在数据分析过程中提供实时的指导和建议,极大地提高了研究效率。_gpt3.0写r语言代码https://blog.csdn.net/WangYan2022/article/details/136614975?spm=1001.2014.3001.5502 ⑤AI大模型引领未来智慧科研暨ChatGPT自然科学高级应用

AI大模型与ChatGPT的碰撞,在GIS、生物、地球、农业、气象、生态、环境科学领域案例应用-CSDN博客文章浏览阅读759次,点赞17次,收藏19次。AI大语言模型带来了新一波人工智能浪潮,可以面向科研选题、思维导图、数据清洗、统计分析、高级编程、代码调试、算法学习、机器/深度学习、大尺度模拟、论文检索、写作、翻译、润色、文献辅助阅读、文献信息提取、辅助论文审稿、新闻撰写、科技绘图、地学绘图(GIS地图绘制)、概念图生成、图像识别、教学课件、教学案例生成、基金润色、专业咨询、文件上传和处理、机器/深度学习训练与模拟、大模型API二次开发等特定任务,生成文本、图片、代码、语音、视频等不同形式的数据、模式和内容,成为不少科研工作者的第二大脑。https://blog.csdn.net/WangYan2022/article/details/137669575?spm=1001.2014.3001.5502★点 击 关 注,获取海量教程和资源

相关推荐
that's boy11 小时前
Google 发布 Sec-Gemini v1:用 AI 重塑网络安全防御格局?
人工智能·安全·web安全·chatgpt·midjourney·ai编程·ai写作
技术程序猿华锋20 小时前
Zotero PDF Translate 翻译插件使用OpenAI API配置教程
人工智能·chatgpt·机器翻译
量子位1 天前
ChatGPT 有了完整记忆!像朋友一样记住所有聊天记录,回复更加私人订制
人工智能·chatgpt
Lonwayne1 天前
为什么ChatGPT选择SSE而非WebSocket?
websocket·网络协议·chatgpt·程序那些事
Justin3go1 天前
GPT4o生图风格大全
chatgpt·openai·midjourney
福宝plus1 天前
如何白嫖Grok3 API?Grok3 API价格? 如何使用Grok3 API调用实例?怎么使用Grok3模型?
chatgpt·claude·grok
姚瑞南2 天前
【Prompt实战】结构化 Prompt 高质量模板
人工智能·chatgpt·prompt·aigc
AIGC大时代2 天前
10个DeepSeek、ChatGPT提示词更快更好的学术文献阅读!
人工智能·chatgpt·文献阅读·智能写作·deepseek·aiwritepaper
姚瑞南2 天前
【Prompt实战】邮件分类专家
人工智能·chatgpt·prompt·aigc
王亭_6662 天前
大模型Prompt提示词越狱相关知识
人工智能·chatgpt·大模型·prompt·deepseek