SVM向量支持机

1.通俗理解

  1. svm:support vector machine
  2. 目标:利用超平面将两类数据分割开来,这个超平面就是我们要设计的对象

如何设计?我们设计之后会有间隔,间隔越大分类效果就越好;距离决策边界最近的点我们成为支持向量,如下图正超平面,负超平面和决策超平面

  1. 损失因子→软间隔(有一定的容错率)
  2. 升维转换(当我们在二维空间无法将数据区分的时候我们可以将数据维度转换到三维空间,在新维度下找到合适的超平面),但是这需要转换函数。

核技巧,提供高维度向量相似度的测量

2.数学理解

对上图的理解:通过两组式子得出w向量和超平面垂直,和Xm-Xn近似,因此我们可以通过数学公式推导出L的公式,因此求Lmax即就是求Wmin,那接下来就看Wmin怎么求

三步,很枯燥

相关推荐
山登绝顶我为峰 3(^v^)324 分钟前
如何录制带备注的演示文稿(LaTex Beamer + Pympress)
c++·线性代数·算法·计算机·密码学·音视频·latex
Two_brushes.1 小时前
【算法】宽度优先遍历BFS
算法·leetcode·哈希算法·宽度优先
IT古董3 小时前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(4)模型评价与调整(Model Evaluation & Tuning)
神经网络·机器学习·回归
森焱森4 小时前
水下航行器外形分类详解
c语言·单片机·算法·架构·无人机
QuantumStack5 小时前
【C++ 真题】P1104 生日
开发语言·c++·算法
写个博客6 小时前
暑假算法日记第一天
算法
绿皮的猪猪侠6 小时前
算法笔记上机训练实战指南刷题
笔记·算法·pta·上机·浙大
hie988947 小时前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab
杰克尼7 小时前
BM5 合并k个已排序的链表
数据结构·算法·链表
蓝婷儿7 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习