SVM向量支持机

1.通俗理解

  1. svm:support vector machine
  2. 目标:利用超平面将两类数据分割开来,这个超平面就是我们要设计的对象

如何设计?我们设计之后会有间隔,间隔越大分类效果就越好;距离决策边界最近的点我们成为支持向量,如下图正超平面,负超平面和决策超平面

  1. 损失因子→软间隔(有一定的容错率)
  2. 升维转换(当我们在二维空间无法将数据区分的时候我们可以将数据维度转换到三维空间,在新维度下找到合适的超平面),但是这需要转换函数。

核技巧,提供高维度向量相似度的测量

2.数学理解

对上图的理解:通过两组式子得出w向量和超平面垂直,和Xm-Xn近似,因此我们可以通过数学公式推导出L的公式,因此求Lmax即就是求Wmin,那接下来就看Wmin怎么求

三步,很枯燥

相关推荐
qq_513970441 分钟前
力扣 hot100 Day37
算法·leetcode
不見星空21 分钟前
leetcode 每日一题 1865. 找出和为指定值的下标对
算法·leetcode
吹风看太阳28 分钟前
机器学习16-总体架构
人工智能·机器学习
我爱Jack31 分钟前
时间与空间复杂度详解:算法效率的度量衡
java·开发语言·算法
DoraBigHead2 小时前
小哆啦解题记——映射的背叛
算法
Heartoxx2 小时前
c语言-指针与一维数组
c语言·开发语言·算法
孤狼warrior3 小时前
灰色预测模型
人工智能·python·算法·数学建模
京东云开发者3 小时前
京东零售基于国产芯片的AI引擎技术
算法
AI生存日记3 小时前
AI 行业早报:微软发布诊断工具,上海聚焦四大应用场景
人工智能·microsoft·机器学习·open ai大模型
chao_7894 小时前
回溯题解——子集【LeetCode】二进制枚举法
开发语言·数据结构·python·算法·leetcode