SVM向量支持机

1.通俗理解

  1. svm:support vector machine
  2. 目标:利用超平面将两类数据分割开来,这个超平面就是我们要设计的对象

如何设计?我们设计之后会有间隔,间隔越大分类效果就越好;距离决策边界最近的点我们成为支持向量,如下图正超平面,负超平面和决策超平面

  1. 损失因子→软间隔(有一定的容错率)
  2. 升维转换(当我们在二维空间无法将数据区分的时候我们可以将数据维度转换到三维空间,在新维度下找到合适的超平面),但是这需要转换函数。

核技巧,提供高维度向量相似度的测量

2.数学理解

对上图的理解:通过两组式子得出w向量和超平面垂直,和Xm-Xn近似,因此我们可以通过数学公式推导出L的公式,因此求Lmax即就是求Wmin,那接下来就看Wmin怎么求

三步,很枯燥

相关推荐
打破砂锅问到底00713 分钟前
Claude--AI领域的安全优等生
大数据·人工智能·机器学习·ai
武子康20 分钟前
大数据-211 逻辑回归的 Scikit-Learn 实现:max_iter、分类方式与多元回归的优化方法
大数据·后端·机器学习
Java后端的Ai之路28 分钟前
【阿里AI大赛】-二手车价格预测使用五折交叉验证
人工智能·深度学习·机器学习·二手车价格预测·天池
过河卒_zh156676631 分钟前
情感型AI被“立规矩”,AI陪伴时代进入下半场
人工智能·算法·aigc·生成式人工智能·算法备案
木头程序员33 分钟前
机器学习核心知识点汇总
大数据·人工智能·机器学习·kmeans·近邻算法
wefg141 分钟前
【算法】动态规划
算法·动态规划
张祥64228890443 分钟前
误差理论与测量平差基础四
人工智能·机器学习·概率论
机器学习之心1 小时前
198种组合算法+优化TCN-Transformer+SHAP分析+新数据预测+多输出!深度学习可解释分析,强烈安利,粉丝必备!
深度学习·算法·transformer·shap分析·新数据预测
狐571 小时前
2026-01-12-LeetCode刷题笔记-1266-访问所有点的最小时间.md
笔记·算法·leetcode
Gorgous—l1 小时前
数据结构算法学习:LeetCode热题100-栈篇(有效的括号、最小栈、字符串解码、每日温度、柱状图中最大的矩形)
数据结构·学习·算法