SVM向量支持机

1.通俗理解

  1. svm:support vector machine
  2. 目标:利用超平面将两类数据分割开来,这个超平面就是我们要设计的对象

如何设计?我们设计之后会有间隔,间隔越大分类效果就越好;距离决策边界最近的点我们成为支持向量,如下图正超平面,负超平面和决策超平面

  1. 损失因子→软间隔(有一定的容错率)
  2. 升维转换(当我们在二维空间无法将数据区分的时候我们可以将数据维度转换到三维空间,在新维度下找到合适的超平面),但是这需要转换函数。

核技巧,提供高维度向量相似度的测量

2.数学理解

对上图的理解:通过两组式子得出w向量和超平面垂直,和Xm-Xn近似,因此我们可以通过数学公式推导出L的公式,因此求Lmax即就是求Wmin,那接下来就看Wmin怎么求

三步,很枯燥

相关推荐
im_AMBER10 分钟前
数据结构 13 图 | 哈希表 | 树
数据结构·笔记·学习·算法·散列表
LYFlied18 分钟前
【算法解题模板】动态规划:从暴力递归到优雅状态转移的进阶之路
数据结构·算法·leetcode·面试·动态规划
黑客思维者24 分钟前
机器学习001:从“让机器学会思考”到生活中的智能魔法
人工智能·机器学习·生活
Hcoco_me42 分钟前
RTMPose_JSON相关解读
算法·数据挖掘·json·聚类
黑客思维者1 小时前
机器学习006:监督学习【回归算法】(概论)--教AI从历史中预测未来
人工智能·学习·机器学习·监督学习·回归算法
高洁011 小时前
DNN案例一步步构建深层神经网络(二)
人工智能·python·深度学习·算法·机器学习
aini_lovee1 小时前
改进遗传算法求解VRP问题时的局部搜索能力
开发语言·算法·matlab
qq_418247881 小时前
Linux上部署conda环境
linux·运维·神经网络·机器学习·conda
Coding茶水间1 小时前
基于深度学习的螺栓螺母检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
老蒋新思维2 小时前
反脆弱性设计:创始人IP与AI智能体如何构建愈动荡愈强大的知识商业|创客匠人
人工智能·网络协议·tcp/ip·算法·机器学习·创始人ip·创客匠人