SVM向量支持机

1.通俗理解

  1. svm:support vector machine
  2. 目标:利用超平面将两类数据分割开来,这个超平面就是我们要设计的对象

如何设计?我们设计之后会有间隔,间隔越大分类效果就越好;距离决策边界最近的点我们成为支持向量,如下图正超平面,负超平面和决策超平面

  1. 损失因子→软间隔(有一定的容错率)
  2. 升维转换(当我们在二维空间无法将数据区分的时候我们可以将数据维度转换到三维空间,在新维度下找到合适的超平面),但是这需要转换函数。

核技巧,提供高维度向量相似度的测量

2.数学理解

对上图的理解:通过两组式子得出w向量和超平面垂直,和Xm-Xn近似,因此我们可以通过数学公式推导出L的公式,因此求Lmax即就是求Wmin,那接下来就看Wmin怎么求

三步,很枯燥

相关推荐
知来者逆12 分钟前
计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
图像处理·人工智能·深度学习·算法·目标检测·计算机视觉·rf-detr
阿让啊16 分钟前
C语言中操作字节的某一位
c语言·开发语言·数据结构·单片机·算法
এ᭄画画的北北17 分钟前
力扣-160.相交链表
算法·leetcode·链表
一只可爱的小猴子38 分钟前
2022李宏毅老师机器学习课程笔记
人工智能·笔记·机器学习
爱研究的小陈1 小时前
Day 3:数学基础回顾——线性代数与概率论在AI中的核心作用
算法
渭雨轻尘_学习计算机ing1 小时前
二叉树的最大宽度计算
算法·面试
爱研究的小陈1 小时前
Day 4:机器学习初探——从监督学习到无监督学习
机器学习
BB_CC_DD2 小时前
四. 以Annoy算法建树的方式聚类清洗图像数据集,一次建树,无限次聚类搜索,提升聚类搜索效率。(附完整代码)
深度学习·算法·聚类
Blossom.1183 小时前
人工智能在智能家居中的应用与发展
人工智能·深度学习·机器学习·智能家居·vr·虚拟现实·多模态融合
薄荷很无奈3 小时前
CuML + Cudf (RAPIDS) 加速python数据分析脚本
python·机器学习·数据分析·gpu算力