BaiChuan13B-GPTQ量化详解

知识要点:

1、按照网上搜索的一些代码,如使用auto_gptq原生库进行训练后量化,可能会正常量化,但是在线推理时会出现如找不到bin文件或者tf文件,即模型权重文件,所以和网上大部分代码不同的地方在于,需要提前保存对应模型的权重文件,如果是BaiChuan13B,那么在进行模型量化前,对其进行保存

代码如下:

def save_bin(pretrained_model_dir, quantized_model_dir):
    from transformers import AutoModelForCausalLM
    import torch
    import os
    
    original_model = AutoModelForCausalLM.from_pretrained(
            pretrained_model_dir, 
            trust_remote_code=True,
            torch_dtype=torch.float16,      # 不执行这个保存的bin文件会非常的大,大概50多G
            safetensors=True
        )
    print("保存bin文件...")
    model_path = os.path.join(quantized_model_dir, "pytorch_model"+".bin")
    torch.save(original_model.state_dict(), model_path)
    print("保存bin文件完成...")

量化代码,使用原生库auto_gptq进行量化:

def from_authority_autogptq(pretrained_model_dir, quantized_model_dir):
    from transformers import AutoTokenizer, AutoModelForCausalLM
    from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
    import logging
    import torch
    import os
    
    logging.basicConfig(
        format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S"
    )


    # 量化分词器加载
    tokenizer = AutoTokenizer.from_pretrained(
        pretrained_model_dir, 
        use_fast=False, 
        trust_remote_code=True
    )
    
    examples = [
        tokenizer(
            "auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."
        )
    ]
    
    # 量化参数配置
    quantize_config = BaseQuantizeConfig(
        bits=4,             # quantize model to 4-bit
        group_size=128,     # it is recommended to set the value to 128
        desc_act=False,     # set to False can significantly speed up inference but the perplexity may slightly bad
    )

    # load un-quantized model, by default, the model will always be loaded into CPU memory
    quantize_model = AutoGPTQForCausalLM.from_pretrained(
        pretrained_model_dir, 
        quantize_config=quantize_config, 
        trust_remote_code=True,
        device_map="auto",
    )
    
    
    print("开始量化模型.......")
    quantize_model.quantize(examples)
    
    # save model weights
    print("保存量化文件...")
    quantize_model.save_quantized(quantized_model_dir)
    print("保存量化文件完成...")
    
    print("保存tokenizer...")
    tokenizer.save_pretrained(quantized_model_dir)
    print("保存tokenizer完成...")

按照上述步骤,此时模型量化文件保存成功,接下来就是模型在线推理

def get_baichuan2_autogptq(quantized_model_dir):
    from transformers import AutoModelForCausalLM, AutoTokenizer
    from transformers.generation.utils import GenerationConfig
    import torch
    # 模型地址
    model_id = quantized_model_dir
    
    print("加载分词器tokenizer...")
    tokenizer = AutoTokenizer.from_pretrained(
        model_id, 
        trust_remote_code=True,
        use_fast=False
    )
    
    '''
    warnings.warn(f'Input type into Linear4bit is torch.float16, but bnb_4bit_compute_type=torch.float32 (default).
    This will lead to slow inference or training speed
    '''
    
    print("加载量化model...")
    quantized_model_4bit = AutoModelForCausalLM.from_pretrained(
        # 要载入的模型名称
        model_id, 
        load_in_4bit=True,
        # 仅使用本地模型,不通过网络下载模型
        local_files_only=True,
        # 指定模型精度
        torch_dtype=torch.float16,
        trust_remote_code=True,
        safetensors=True
    )
    
    print("加载config...")
    quantized_model_4bit.generation_config = GenerationConfig.from_pretrained(
        model_id
    )

    # 实例测试
    print("生成...")
    messages = []
    messages.append({"role": "user", "content":"亚历山大为何如此厉害"})
    response = quantized_model_4bit.chat(tokenizer, messages)
    print(response)
    return response 

最后整合代码:

'''bin 文件是保存的是原始的加载模型文件,不涉及量化操作的模型过程,不然会报错或者加载不出来!!!'''
def save_bin(pretrained_model_dir, quantized_model_dir):
    from transformers import AutoModelForCausalLM
    import torch
    import os
    
    original_model = AutoModelForCausalLM.from_pretrained(
            pretrained_model_dir, 
            trust_remote_code=True,
            torch_dtype=torch.float16,      # 不执行这个保存的bin文件会非常的大,大概50多G
            safetensors=True
        )
    print("保存bin文件...")
    model_path = os.path.join(quantized_model_dir, "pytorch_model"+".bin")
    torch.save(original_model.state_dict(), model_path)
    print("保存bin文件完成...")



# auto_gptq原生库, 量化占用显存7-10G不等,用时23分钟,推理18G
def from_authority_autogptq(pretrained_model_dir, quantized_model_dir):
    from transformers import AutoTokenizer, AutoModelForCausalLM
    from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
    import logging
    import torch
    import os
    
    logging.basicConfig(
        format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S"
    )


    # 量化分词器加载
    tokenizer = AutoTokenizer.from_pretrained(
        pretrained_model_dir, 
        use_fast=False, 
        trust_remote_code=True
    )
    
    examples = [
        tokenizer(
            "auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."
        )
    ]
    
    # 量化参数配置
    quantize_config = BaseQuantizeConfig(
        bits=4,             # quantize model to 4-bit
        group_size=128,     # it is recommended to set the value to 128
        desc_act=False,     # set to False can significantly speed up inference but the perplexity may slightly bad
    )

    # load un-quantized model, by default, the model will always be loaded into CPU memory
    quantize_model = AutoGPTQForCausalLM.from_pretrained(
        pretrained_model_dir, 
        quantize_config=quantize_config, 
        trust_remote_code=True,
        device_map="auto",
    )
    
    
    print("开始量化模型.......")
    quantize_model.quantize(examples)
    
    # save model weights
    print("保存量化文件...")
    quantize_model.save_quantized(quantized_model_dir)
    print("保存量化文件完成...")
    
    print("保存tokenizer...")
    tokenizer.save_pretrained(quantized_model_dir)
    print("保存tokenizer完成...")



# 加载量化后的模型方法
def get_baichuan2_autogptq(quantized_model_dir):
    from transformers import AutoModelForCausalLM, AutoTokenizer
    from transformers.generation.utils import GenerationConfig
    import torch
    # 模型地址
    model_id = quantized_model_dir
    
    print("加载分词器tokenizer...")
    tokenizer = AutoTokenizer.from_pretrained(
        model_id, 
        trust_remote_code=True,
        use_fast=False
    )
    
    '''
    warnings.warn(f'Input type into Linear4bit is torch.float16, but bnb_4bit_compute_type=torch.float32 (default).
    This will lead to slow inference or training speed
    '''
    
    print("加载量化model...")
    quantized_model_4bit = AutoModelForCausalLM.from_pretrained(
        # 要载入的模型名称
        model_id, 
        load_in_4bit=True,
        # 仅使用本地模型,不通过网络下载模型
        local_files_only=True,
        # 指定模型精度
        torch_dtype=torch.float16,
        trust_remote_code=True,
        safetensors=True
    )
    
    print("加载config...")
    quantized_model_4bit.generation_config = GenerationConfig.from_pretrained(
        model_id
    )

    # 实例测试
    print("生成...")
    messages = []
    messages.append({"role": "user", "content":"```桥架\n1、名称:机房走线架(铝合金) 2、规格:300mm*100mm 3、含支吊架制作安装 4、其它:具体详见图纸、技术规范书、图集、招标文件、招标答疑、政府相关文件、规范等其它资料,满足验收要求```\n请仔细阅读上文,并从中分析出实体列表中的各实体。请使用json字典格式回答,其中,键为各实体名称,值为从文本中提取出的内容(若没有相应实体则值为'无')。\n实体列表如下(目标实体之间通过";"隔开): ```名称;型号;材质;类型;规格;接地方式```"})
    response = quantized_model_4bit.chat(tokenizer, messages)
    print(response)
    return response 





if __name__ == "__main__":
    # from_transformers_autogptq 方法量化模型
    # pretrained_model_dir = "/root/lk/big_model/Baichuan2-13B-Chat"
    # quantized_model_dir = "/root/lk/big_model/baichuan2_autogptq"
    # from_transformers_autogptq(pretrained_model_dir, quantized_model_dir)
    
    import datetime
    print("程序开始时间------->>>>>>", datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
    
    
    # 地址
    pretrained_model_dir = "/root/lk/big_model/Baichuan2-13B-Chat"
    quantized_model_dir = "/root/lk/big_model/baichuan2_autogptq"
    
    # 第一步:保存原始模型的Bin文件,然后再量化(很关键)
    # save_bin(pretrained_model_dir, quantized_model_dir)
    
    # 第二部:执行来自autogptq原始包量化模型
    # from_authority_autogptq(pretrained_model_dir, quantized_model_dir)
    
    # 第三部:使用量化模型进行推理(需要添加对应文件)
    get_baichuan2_autogptq(quantized_model_dir)
    
    
    print("程序结束时间------->>>>>>", datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))

对应包版本:

auto-gptq==0.6.0
transformers==4.39.2
torch==2.0.1
相关推荐
Tianyanxiao26 分钟前
如何利用探商宝精准营销,抓住行业机遇——以AI技术与大数据推动企业信息精准筛选
大数据·人工智能·科技·数据分析·深度优先·零售
撞南墙者33 分钟前
OpenCV自学系列(1)——简介和GUI特征操作
人工智能·opencv·计算机视觉
OCR_wintone42134 分钟前
易泊车牌识别相机,助力智慧工地建设
人工智能·数码相机·ocr
王哈哈^_^1 小时前
【数据集】【YOLO】【VOC】目标检测数据集,查找数据集,yolo目标检测算法详细实战训练步骤!
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·pyqt
一者仁心1 小时前
【AI技术】PaddleSpeech
人工智能
写代码的小阿帆1 小时前
pytorch实现深度神经网络DNN与卷积神经网络CNN
pytorch·cnn·dnn
是瑶瑶子啦1 小时前
【深度学习】论文笔记:空间变换网络(Spatial Transformer Networks)
论文阅读·人工智能·深度学习·视觉检测·空间变换
EasyCVR1 小时前
萤石设备视频接入平台EasyCVR多品牌摄像机视频平台海康ehome平台(ISUP)接入EasyCVR不在线如何排查?
运维·服务器·网络·人工智能·ffmpeg·音视频
柳鲲鹏1 小时前
OpenCV视频防抖源码及编译脚本
人工智能·opencv·计算机视觉
西柚小萌新2 小时前
8.机器学习--决策树
人工智能·决策树·机器学习