Scikit-Learn 支持向量机分类
1、支持向量机(SVM)
1.1、SVM概述
在机器学习中,支持向量机(Support Vector Machine,SVM)算法既可以用于回归问题(SVR),也可以用于分类问题(SVC)
支持向量机是一种经典的监督学习算法,通常用于分类问题。SVM在机器学习知识结构中的位置如下:
SVM的核心思想是将分类问题转化为寻找分类平面的问题,并通过最大化分类边界点(支持向量)到分类平面的距离(间隔)来实现分类
如图所示,左图展示了三种可能的线性分类器的决策边界,虚线所代表的模型表现非常糟糕,甚至都无法正确实现分类;其余两个模型在训练集上表现堪称完美,但是它们的决策边界与实例过于接近,导致在面对新样本时,表现可能不会太好
右图中的实线代表SVM分类器的决策边界,两虚线表示最大间隔超平面,虚线之间的距离(两个异类支持向量到超平面的距离之和)称为超平面最大间隔,简称间隔;SVM的决策边界不仅分离了两个类别,而且尽可能的远离了最近的训练实例,距离决策边界最近的实例称为支持向量
1.2、SVM原理
SVM的最优化问题就是要找到各类样本点到超平面的距离最远,也就是找到最大间隔超平面。任意超平面的方程为
ω T x + b = 0 \omega^Tx+b=0 ωTx+b=0
其中 ω \omega ω为超平面的法向量,决定了超平面的方向; b b b为位移项,决定了超平面到原点间的距离
二维空间点 ( x , y ) (x,y) (x,y)到直线 A x + B y + C = 0 Ax+By+C=0 Ax+By+C=0的距离公式为
d = ∣ A x + B y + C ∣ A 2 + B 2 d=\frac{|Ax+By+C|}{\sqrt{A^2+B^2}} d=A2+B2 ∣Ax+By+C∣
扩展到N维空间中,点 ( x 1 , x 2 , . . . x n ) (x_1,x_2,...x_n) (x1,x2,...xn)到直线 ω T x + b = 0 \omega^Tx+b=0 ωTx+b=0的距离为
d = ∣ ω T x + b ∣ ∣ ∣ ω ∣ ∣ d=\frac{|\omega^Tx+b|}{||\omega||} d=∣∣ω∣∣∣ωTx+b∣
其中, ∣ ∣ ω ∣ ∣ ||\omega|| ∣∣ω∣∣= ω 1 2 + ω 2 2 + . . . + ω n 2 \sqrt{\omega_1^2+\omega_2^2+...+\omega_n^2} ω12+ω22+...+ωn2
SVM假设样本是线性可分的,则任意样本点到超平面的距离可写为
d = ∣ ω T x + b ∣ ∣ ∣ ω ∣ ∣ d=\frac{|\omega^Tx+b|}{||\omega||} d=∣∣ω∣∣∣ωTx+b∣
为方便描述和计算,设 y i ∈ − 1 , 1 y_i\in{-1,1} yi∈−1,1,其中1表示正例,-1表示负例,则有
{ ω T x i + b ≥ + 1 y i = + 1 ω T x i + b ≤ − 1 y i = − 1 \begin{cases} \omega^Tx_i + b ≥ +1 \, \, & y_i=+1 \\ \omega^T x_i+b ≤ -1 \, \, & y_i=-1 \end{cases} {ωTxi+b≥+1ωTxi+b≤−1yi=+1yi=−1
此时,两个异类支持向量到超平面的距离之和为
γ i = y i ( ω T ∣ ∣ ω ∣ ∣ ⋅ x i + b ∣ ∣ ω ∣ ∣ ) = 2 ∣ ∣ ω ∣ ∣ \gamma_i=y_i\left(\frac{\omega^T}{||\omega||}\cdot x_i + \frac{b}{||\omega||} \right) = \frac{2}{||\omega||} γi=yi(∣∣ω∣∣ωT⋅xi+∣∣ω∣∣b)=∣∣ω∣∣2
其中, γ \gamma γ称为间隔。最大间隔不仅与 ω \omega ω有关,偏置 b b b也会隐性影响超平面的位置,进而对间隔产生影响
现在,我们只需要使间隔 γ \gamma γ最大,即
arg max ω , b 2 ∣ ∣ ω ∣ ∣ \arg \mathop{\max}\limits_{\omega,b} \frac{2}{||\omega||} argω,bmax∣∣ω∣∣2
最大化间隔 γ \gamma γ,显然只需要最小化 ∣ ∣ ω ∣ ∣ ||\omega|| ∣∣ω∣∣,于是,上式可重写为
arg min ω , b 1 2 ∣ ∣ ω ∣ ∣ 2 \arg \mathop{\min}\limits_{\omega,b} \frac{1}{2}||\omega||^2 argω,bmin21∣∣ω∣∣2
这里的平方和之前一样,一是为了方便计算,二是可以将目标函数转化为凸函数的凸优化问题。称该式为SVM的基本型
1.3、SVM的损失函数
1.3.1、软间隔与硬间隔
如果我们严格让所有实例都不在最大间隔之间,并且位于正确的一边,这就是硬间隔分类。但是硬间隔分类有两个问题:首先,它只在数据是线性可分时才有效;其次,它对异常值较敏感
要避免这些问题,可以使用更灵活的模型。目标是尽可能在保持最大间隔的同时允许间隔违例(在最大间隔之间,甚至位于错误的一边),在最大间隔与违例之间找到良好的平衡,这就是软间隔分类
软间隔的目标函数为
J = 1 2 ∣ ∣ ω ∣ ∣ 2 + C ∑ i = 1 n ε i J=\frac{1}{2}||\omega||^2 + C\sum_{i=1}^{n}\varepsilon_i J=21∣∣ω∣∣2+Ci=1∑nεi
其中,超参数 C C C为惩罚系数, ε \varepsilon ε为松弛因子。 C C C越小,惩罚越小(间隔越宽,违例越多)
1.3.2、核函数
未完待续...