Windows安装Ollama结合内网穿透实现公网访问本地大语言模型Web交互界面

目录

⛳️推荐

前言

[1. 运行Ollama](#1. 运行Ollama)

[2. 安装Open WebUI](#2. 安装Open WebUI)

[2.1 在Windows系统安装Docker](#2.1 在Windows系统安装Docker)

[2.2 使用Docker部署Open WebUI](#2.2 使用Docker部署Open WebUI)

[3. 安装内网穿透工具](#3. 安装内网穿透工具)

[4. 创建固定公网地址](#4. 创建固定公网地址)


⛳️推荐

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站

前言

本文主要介绍如何在Windows系统快速部署Ollama开源大语言模型运行工具,并安装Open WebUI结合cpolar内网穿透软件,实现在公网环境也能访问你在本地内网搭建的大语言模型运行环境。

近些年来随着ChatGPT的兴起,大语言模型 LLM(Large Language Model)也成为了人工智能AI领域的热门话题,很多大厂也都推出了自己的大语言模型,并或多或少的开源了自己的大语言模型,今天就来分享一个最近很火,且对于小白来说比较好上手本地部署的运行本地LLM的工具Ollama。

在本地运行大语言模型有诸多优点:

比如可以保护隐私不会产生费用可以无视网络问题可以尝鲜各种开源模型等等。

Ollama支持当前主要的开源大模型, 比如llama2、千文qwen、mistral等,可以在Windows、Linux、MacOS系统上进行部署。稳定性和便利性都非常不错,下面就来分享一下它在Windows系统上的安装与应用。

1. 运行Ollama

本文安装环境为:Windows10专业版

**下载:**Ollama下载地址:https://ollama.com/download

在下载页面点击Windows,然后点击下载按钮。

**安装:**下载完成后,双击下载的安装程序。

点击Install进行安装。

安装完成没有提示,我们打开一个终端,本文以Windows PowerShell为例,大家也可以使用其他的:

现在Ollama已经安装完了,我们需要在终端中输入下方命令运行一个大语言模型进行测试,这里以对在中文方面表现相对好些的千问为例,大家也可以使用其他的模型。

ollama run qwen

可以看到,系统正在下载qwen的模型(并保存在C盘,C:\Users\.ollama\models 如果想更改默认路径,可以通过设置OLLAMA_MODELS进行修改,然后重启终端,重启ollama服务。)

setx OLLAMA_MODELS "D:\ollama_model"

模型下载完成后,我们就可以在终端中输入问题进行使用了:

至此,在Windows本地部署ollama并运行qwen大语言模型就已经完成了。一键搞定,对新手体验大语言模型真的非常友好。

2. 安装Open WebUI

不过,我们现在只能在终端中使用,操作界面可能不像ChatGPT那样美观,如果能使用web页面进行交互,使用体验更好,也能保留之前的聊天记录,翻遍我们翻阅查询。

针对这个情况,我们可以在Windows上部署Open WebUI这个项目来实现类似chatgpt一样的交互界面。

本教程以Open WebUI这个项目为例,它以前的名字就叫 Formerly Ollama WebUI。可以理解为一开始就是专门适配Ollama的WebUI,它的界面也对用惯了chatgpt的小伙伴来说更相似一些。当然,大家也可以选择其他的WebUI,之后有机会也可以分享给大家。

如何在Windows系统安装Open WebUI:

2.1 在Windows系统安装Docker

首先,如果大家之前未安装过Docker,需要执行下面三个步骤进行安装:

第一步:启动Hyper-v

打开控制面板,在程序与功能页面选择启用或Windows功能

勾选Hyper-V、虚拟机平台、Linux子系统并点击确认

然后,重启计算机。

第二步:安装WSL

打开 powershell,以管理员的身份启动命令窗口,输入

wsl --update

安装

wsl --install

然后再次重启电脑。

第三步:访问Docker官网进行下载

点击下载链接:https://docs.docker.com/desktop/install/windows-install/

选择Windows最新版本:

下载完成后,双击安装程序进行安装,如果是第一次安装,安装后会提示重启电脑,重启后点击桌面的Docker Desktop图标:选择先不注册直接登录即可。

打开Docker Desktop后,左下角显示是绿色的running就代表我们成功了:

视频安装教程:【Docker教程】如何在Windows系统安装Docker

2.2 使用Docker部署Open WebUI

在Open WebUI的github页面 https://github.com/open-webui/open-webui 可以看到,如果你的Ollama和Open WebUI在同一台主机,那使用下面显示的这一行命令就可以在本地快速进行部署:

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

现在我们打开终端,比如powershell,然后输入docker,回车

可以看到这个命令成功运行,说明docker安装成功。

然后将上边在docker中部署Open WebUI的命令复制后粘贴到终端中,回车。

然后等待安装完毕即可:如下图所示

安装完成后,在Docker Desktop中可以看到Open WebUI的web界面地址为:https://localhost:3000

点击后,会在浏览器打开登录界面:

点击sign up注册,账号,邮箱,密码记好,下次登录时需要用到邮箱和密码登录:

然后点击create account创建账号即可:然后就能在浏览器中使用类似chatgpt界面的Open WebUI了!

点击右上角的设置,可以修改当前界面的语言为简体中文:然后点击保存即可。

点击上方选择一个模型旁边的加号+可以增加大模型,点击下拉按钮可以选择当前使用哪一个已安装的模型,接下来就可以愉快的跟ai聊天了!

3. 安装内网穿透工具

至此,我们已经成功完成在本地Windows系统使用Docker部署Open WebUI与Ollama大模型工具进行交互了!但如果想实现出门在外,也能随时随地使用Ollama Open WebUI,那就需要借助cpolar内网穿透工具来实现公网访问了!接下来介绍一下如何安装cpolar内网穿透并实现公网访问!

下面是安装cpolar步骤:

cpolar官网地址: https://www.cpolar.com

点击进入cpolar官网,点击免费使用注册一个账号,并下载最新版本的cpolar

登录成功后,点击下载cpolar到本地并安装(一路默认安装即可)本教程选择下载Windows版本。

cpolar安装成功后,在浏览器上访问http://localhost:9200,使用cpolar账号登录,登录后即可看到cpolar web 配置界面,结下来在web 管理界面配置即可。

接下来配置一下 Open WebUI 的公网地址,

登录后,点击左侧仪表盘的隧道管理------创建隧道,

创建一个 ollama1 的公网http地址隧道:

  • 隧道名称:ollama1(可自定义命名,注意不要与已有的隧道名称重复)
  • 协议:选择http
  • 本地地址:3000 (本地访问的地址)
  • 域名类型:免费选择随机域名
  • 地区:选择China Top

隧道创建成功后,点击左侧的状态------在线隧道列表,查看所生成的公网访问地址,有两种访问方式,一种是http 和https:

使用上面的任意一个公网地址,在手机或任意设备的浏览器进行登录访问,即可成功看到 Open WebUI 界面,这样一个公网地址且可以远程访问就创建好了,使用了cpolar的公网域名,无需自己购买云服务器,即可到公网访问 Open WebUI 了!

小结

如果我们需要长期异地远程访问Open WebUI,由于刚才创建的是随机的地址,24小时会发生变化。另外它的网址是由随机字符生成,不容易记忆。如果想把域名变成固定的二级子域名,并且不想每次都重新创建隧道来访问Open WebUI,我们可以选择创建一个固定的公网地址来解决这个问题。

4. 创建固定公网地址

我们接下来为其配置固定的HTTP端口地址,该地址不会变化,方便分享给别人长期查看你部署的项目,而无需每天重复修改服务器地址。

配置固定http端口地址需要将cpolar升级到专业版套餐或以上。

登录cpolar官网,点击左侧的预留,选择保留二级子域名,设置一个二级子域名名称,点击保留,保留成功后复制保留的二级子域名名称

保留成功后复制保留成功的二级子域名的名称:myollama,大家也可以设置自己喜欢的名称。

返回登录Cpolar web UI管理界面,点击左侧仪表盘的隧道管理------隧道列表,找到所要配置的隧道:ollama1,点击右侧的编辑:

修改隧道信息,将保留成功的二级子域名配置到隧道中

  • 域名类型:选择二级子域名
  • Sub Domain:填写保留成功的二级子域名:myollama

点击更新(注意,点击一次更新即可,不需要重复提交)

更新完成后,打开在线隧道列表,此时可以看到公网地址已经发生变化,地址名称也变成了固定的二级子域名名称的域名:

最后,我们使用固定的公网https地址访问,可以看到访问成功,这样一个固定且永久不变的公网地址就设置好了,可以随时随地在公网环境异地访问本地部署的 Open WebUI 了!

以上就是如何在Windows系统本地安装Ollama大模型工具并使用docker部署Open WebUI,结合cpolar内网穿透工具实现公网访问本地LLM,并配置固定不变的二级子域名公网地址实现远程访问的全部流程,感谢您的观看,有任何问题欢迎留言交流。

相关推荐
AI极客菌43 分钟前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭1 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^1 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
cs_dn_Jie1 小时前
钉钉 H5 微应用 手机端调试
前端·javascript·vue.js·vue·钉钉
Power20246662 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k2 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫2 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
开心工作室_kaic2 小时前
ssm068海鲜自助餐厅系统+vue(论文+源码)_kaic
前端·javascript·vue.js
沉下心来学鲁班2 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k2 小时前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型