【机器学习300问】73、神经网络中有哪些常见超参数?

关于什么是机器学习中的超参数和普通参数,我之前写过一篇文章给大家介绍过。简单讲超参数是在模型训练开始前由用户人为指定的,而非通过训练过程自动学到的参数。

【机器学习300问】22、什么是超参数优化?常见超参数优化方法有哪些?http://t.csdnimg.cn/cCLeR

神经网络中有哪些常见超参数?

(1)学习率(Learning Rate)

  • 学习率的作用是控制参数跟新的步长。
  • 较高的学习率可以使模型快速收敛,但也可能导致训练过程不稳定或错过最优解;
  • 较低的学习率则可能导致训练速度慢,需要更多次迭代才能接近最优解。
  • 因此适当的学习率对模型训练至关重要。

(2)迭代次数(Epochs)

  • 迭代次数又叫训练周期,是指完整的把所有训练集数据输入模型训练的轮次。
  • 更多的迭代次数允许模型对数据进行更深入的学习;
  • 但过多轮次的迭代也可能增加过拟合风险;
  • 需要根据模型的复杂度和数据集的大小来人为设定合适的迭代次数。

(3)网络层数(Number of Layers)

  • 包括输入层、隐藏层和输出层的数量。由于输入层和输出层一般是固定的,所以网络层数也可以指隐藏层层数。
  • 增加层数通常可以捕获更复杂的模式,但也可能导致训练难度加大和模型过拟合
  • 减少层数对于复杂的任务任务而言可能会导致欠拟合,但如果要学习的模式本身就很简单,那么减少层数反而会有好的效果。

(4)每层神经元的数量(Nodes)

每层神经元的数据量可以决定每一层网络的计算能力和模型复杂度。增加神经元数量可以提神模型的表达能力,但也可能增加过拟合的风险。

(5)激活函数(Activation Function)

用于引入非线性,常用激活函数有Sigmoid、ReLU、Leaky ReLU、Tanh等。激活函数的选择会影响模型的训练效率、梯度传播以及模型的表达能力。

(6)批量大小(Batch Size)

  • 批量大小是指每次梯度更新时使用的样本数量。
  • 较小的批量有助于模型更快地遍历整个训练集,捕捉数据的更多细节,但可能导致训练过程更不稳定。
  • 较大的批量可以提供更稳定的梯度估计,但可能需要更多的内存资源,并可能导致模型对某些小规模模式的忽略。

(7)正则化参数(Regularization Parameters)

在损失函数中加入正则化系数可以防止过拟合。这些参数控制着正则化项对模型复杂度的惩罚力度,直接影响模型在训练集和测试集上的表现。

(8)Dropout比例(Dropout Rate)

在训练过程中随机关闭一部分神经元的比例,dropout也是一种正则化手段,用来防止过拟合。设置合理Dropout率可以帮助模型提升泛化能力。

相关推荐
jake don8 小时前
AI 深度学习路线
人工智能·深度学习
bst@微胖子9 小时前
LlamaIndex之核心概念及部署以及入门案例
pytorch·深度学习·机器学习
无风听海9 小时前
CBOW 模型中的输出层
人工智能·机器学习
心态与习惯10 小时前
深度学习中的 seq2seq 模型
人工智能·深度学习·seq2seq
AI即插即用12 小时前
即插即用系列 | CVPR 2025 AmbiSSL:首个注释模糊感知的半监督医学图像分割框架
图像处理·人工智能·深度学习·计算机视觉·视觉检测
王锋(oxwangfeng)12 小时前
自动驾驶领域OCC标注
人工智能·机器学习·自动驾驶
小鸡吃米…12 小时前
机器学习中的分类算法
人工智能·机器学习·分类
Coding茶水间13 小时前
基于深度学习的交通标志检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习
飞Link13 小时前
【论文笔记】《Deep Learning for Time Series Anomaly Detection: A Survey》
rnn·深度学习·神经网络·cnn·transformer
旷野说14 小时前
打造 36Gbps 超高速本地机器学习开发环境
人工智能·机器学习