【机器学习300问】73、神经网络中有哪些常见超参数?

关于什么是机器学习中的超参数和普通参数,我之前写过一篇文章给大家介绍过。简单讲超参数是在模型训练开始前由用户人为指定的,而非通过训练过程自动学到的参数。

【机器学习300问】22、什么是超参数优化?常见超参数优化方法有哪些?http://t.csdnimg.cn/cCLeR

神经网络中有哪些常见超参数?

(1)学习率(Learning Rate)

  • 学习率的作用是控制参数跟新的步长。
  • 较高的学习率可以使模型快速收敛,但也可能导致训练过程不稳定或错过最优解;
  • 较低的学习率则可能导致训练速度慢,需要更多次迭代才能接近最优解。
  • 因此适当的学习率对模型训练至关重要。

(2)迭代次数(Epochs)

  • 迭代次数又叫训练周期,是指完整的把所有训练集数据输入模型训练的轮次。
  • 更多的迭代次数允许模型对数据进行更深入的学习;
  • 但过多轮次的迭代也可能增加过拟合风险;
  • 需要根据模型的复杂度和数据集的大小来人为设定合适的迭代次数。

(3)网络层数(Number of Layers)

  • 包括输入层、隐藏层和输出层的数量。由于输入层和输出层一般是固定的,所以网络层数也可以指隐藏层层数。
  • 增加层数通常可以捕获更复杂的模式,但也可能导致训练难度加大和模型过拟合
  • 减少层数对于复杂的任务任务而言可能会导致欠拟合,但如果要学习的模式本身就很简单,那么减少层数反而会有好的效果。

(4)每层神经元的数量(Nodes)

每层神经元的数据量可以决定每一层网络的计算能力和模型复杂度。增加神经元数量可以提神模型的表达能力,但也可能增加过拟合的风险。

(5)激活函数(Activation Function)

用于引入非线性,常用激活函数有Sigmoid、ReLU、Leaky ReLU、Tanh等。激活函数的选择会影响模型的训练效率、梯度传播以及模型的表达能力。

(6)批量大小(Batch Size)

  • 批量大小是指每次梯度更新时使用的样本数量。
  • 较小的批量有助于模型更快地遍历整个训练集,捕捉数据的更多细节,但可能导致训练过程更不稳定。
  • 较大的批量可以提供更稳定的梯度估计,但可能需要更多的内存资源,并可能导致模型对某些小规模模式的忽略。

(7)正则化参数(Regularization Parameters)

在损失函数中加入正则化系数可以防止过拟合。这些参数控制着正则化项对模型复杂度的惩罚力度,直接影响模型在训练集和测试集上的表现。

(8)Dropout比例(Dropout Rate)

在训练过程中随机关闭一部分神经元的比例,dropout也是一种正则化手段,用来防止过拟合。设置合理Dropout率可以帮助模型提升泛化能力。

相关推荐
CoovallyAIHub11 小时前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
CoovallyAIHub12 小时前
开源的消逝与新生:从 TensorFlow 的落幕到开源生态的蜕变
pytorch·深度学习·llm
CoovallyAIHub18 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub18 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
惯导马工2 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
AI小云3 天前
【机器学习与实战】回归分析与预测:线性回归-03-损失函数与梯度下降
机器学习
隐语SecretFlow3 天前
国人自研开源隐私计算框架SecretFlow,深度拆解框架及使用【开发者必看】
深度学习
Billy_Zuo3 天前
人工智能深度学习——卷积神经网络(CNN)
人工智能·深度学习·cnn
羊羊小栈3 天前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业
l12345sy3 天前
Day24_【深度学习—广播机制】
人工智能·pytorch·深度学习·广播机制