论文笔记:How Can Large Language Models Understand Spatial-Temporal Data?

arxiv 202401

1 intro

  • LLM在NLP和CV领域表现出色,但将它们应用于时空预测任务仍然面临挑战,主要问题包括:
    • 数据不匹配
      • 传统的LLMs设计用于处理序列文本数据,而时空数据具有复杂的结构和动态性,这两者之间存在显著差异
    • 模型设计限制
      • 现有的时空预测方法通常需要为特定领域设计专门的模型,这限制了模型的通用性和适应性
    • 数据稀缺和泛化能力
      • 传统的时空预测方法在面对数据稀缺或稀疏的情况下表现不佳,且泛化能力有限
    • ------>论文提出了STG-LLM(Spatial-Temporal Graph-Large Language Model)
      • STG-Tokenizer
        • 时空图(graph)标记器(Tokenizer)
        • 将复杂的图数据转换为简洁的tokens,这些token能够捕捉空间和时间关系
      • STG-Adapter
        • 轻量级的适配器,包含线性编码和解码层,用于在LLMs和token化数据之间架起桥梁
        • 通过微调少量参数,使LLMs能够理解由STG-Tokenizer生成的token的语义,同时保留LLMs原有的自然语言理解能力

2 LLM+时空的几种可能方法

3 论文方法

4 实验

4.1 supervised比较

4.2 few shot 迁移能力

4.3 ablation study

相关推荐
qzhqbb2 小时前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨3 小时前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041083 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
AI极客菌4 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭4 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^4 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246665 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k5 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫5 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班5 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型