论文笔记:How Can Large Language Models Understand Spatial-Temporal Data?

arxiv 202401

1 intro

  • LLM在NLP和CV领域表现出色,但将它们应用于时空预测任务仍然面临挑战,主要问题包括:
    • 数据不匹配
      • 传统的LLMs设计用于处理序列文本数据,而时空数据具有复杂的结构和动态性,这两者之间存在显著差异
    • 模型设计限制
      • 现有的时空预测方法通常需要为特定领域设计专门的模型,这限制了模型的通用性和适应性
    • 数据稀缺和泛化能力
      • 传统的时空预测方法在面对数据稀缺或稀疏的情况下表现不佳,且泛化能力有限
    • ------>论文提出了STG-LLM(Spatial-Temporal Graph-Large Language Model)
      • STG-Tokenizer
        • 时空图(graph)标记器(Tokenizer)
        • 将复杂的图数据转换为简洁的tokens,这些token能够捕捉空间和时间关系
      • STG-Adapter
        • 轻量级的适配器,包含线性编码和解码层,用于在LLMs和token化数据之间架起桥梁
        • 通过微调少量参数,使LLMs能够理解由STG-Tokenizer生成的token的语义,同时保留LLMs原有的自然语言理解能力

2 LLM+时空的几种可能方法

3 论文方法

4 实验

4.1 supervised比较

4.2 few shot 迁移能力

4.3 ablation study

相关推荐
HuggingFace2 小时前
Hugging Face 开源机器人 Reachy Mini 开启预定
人工智能
企企通采购云平台3 小时前
「天元宠物」×企企通,加速数智化升级,“链”接萌宠消费新蓝海
大数据·人工智能·宠物
超级小忍3 小时前
Spring AI ETL Pipeline使用指南
人工智能·spring
张较瘦_4 小时前
[论文阅读] 人工智能 | 读懂Meta-Fair:让LLM摆脱偏见的自动化测试新方法
论文阅读·人工智能
巴伦是只猫4 小时前
【机器学习笔记 Ⅲ】4 特征选择
人工智能·笔记·机器学习
好心的小明4 小时前
【王树森推荐系统】召回11:地理位置召回、作者召回、缓存召回
人工智能·缓存·推荐系统·推荐算法
lishaoan775 小时前
使用tensorflow的线性回归的例子(十二)
人工智能·tensorflow·线性回归·戴明回归
二DUAN帝5 小时前
UE实现路径回放、自动驾驶功能简记
人工智能·websocket·机器学习·ue5·自动驾驶·ue4·cesiumforue
zskj_zhyl6 小时前
AI健康小屋“15分钟服务圈”:如何重构社区健康生态?
大数据·人工智能·物联网
荔枝味啊~6 小时前
相机位姿估计
人工智能·计算机视觉·3d