论文笔记:How Can Large Language Models Understand Spatial-Temporal Data?

arxiv 202401

1 intro

  • LLM在NLP和CV领域表现出色,但将它们应用于时空预测任务仍然面临挑战,主要问题包括:
    • 数据不匹配
      • 传统的LLMs设计用于处理序列文本数据,而时空数据具有复杂的结构和动态性,这两者之间存在显著差异
    • 模型设计限制
      • 现有的时空预测方法通常需要为特定领域设计专门的模型,这限制了模型的通用性和适应性
    • 数据稀缺和泛化能力
      • 传统的时空预测方法在面对数据稀缺或稀疏的情况下表现不佳,且泛化能力有限
    • ------>论文提出了STG-LLM(Spatial-Temporal Graph-Large Language Model)
      • STG-Tokenizer
        • 时空图(graph)标记器(Tokenizer)
        • 将复杂的图数据转换为简洁的tokens,这些token能够捕捉空间和时间关系
      • STG-Adapter
        • 轻量级的适配器,包含线性编码和解码层,用于在LLMs和token化数据之间架起桥梁
        • 通过微调少量参数,使LLMs能够理解由STG-Tokenizer生成的token的语义,同时保留LLMs原有的自然语言理解能力

2 LLM+时空的几种可能方法

3 论文方法

4 实验

4.1 supervised比较

4.2 few shot 迁移能力

4.3 ablation study

相关推荐
梓羽玩Python2 分钟前
开源版Manus来了!14.7k标星的OpenManus,让AI替你全自动执行任务!
人工智能·github
广拓科技3 分钟前
中国视频生成 AI 开源潮:腾讯阿里掀技术普惠革命,重塑内容创作格局
人工智能·开源
dr李四维13 分钟前
Java在小米SU7 Ultra汽车中的技术赋能
java·人工智能·安卓·智能驾驶·互联·小米su7ultra·hdfs架构
guanshiyishi14 分钟前
ABeam 德硕 | 中国汽车市场(1)——正在推进电动化的中国汽车市场
人工智能·物联网·汽车
思茂信息15 分钟前
CST直角反射器 --- 距离多普勒(RD图), 毫米波汽车雷达ADAS
前端·人工智能·5g·汽车·无人机·软件工程
瑞瑞大大29 分钟前
简单介绍下Manus功能
人工智能
小杨40433 分钟前
python入门系列六(文件操作)
人工智能·python·pycharm
deephub39 分钟前
Chain of Draft: 借鉴人类草稿思维让大型语言模型更快地思考
人工智能·语言模型·自然语言处理·思维链
碣石潇湘无限路1 小时前
【AI】基于扩散方案的大语言模型研究报告
人工智能·语言模型·自然语言处理
EasyCVR1 小时前
EasyRTC嵌入式音视频通话SDK:基于ICE与STUN/TURN的实时音视频通信解决方案
人工智能·音视频·webrtc·实时音视频·h.265