论文笔记:How Can Large Language Models Understand Spatial-Temporal Data?

arxiv 202401

1 intro

  • LLM在NLP和CV领域表现出色,但将它们应用于时空预测任务仍然面临挑战,主要问题包括:
    • 数据不匹配
      • 传统的LLMs设计用于处理序列文本数据,而时空数据具有复杂的结构和动态性,这两者之间存在显著差异
    • 模型设计限制
      • 现有的时空预测方法通常需要为特定领域设计专门的模型,这限制了模型的通用性和适应性
    • 数据稀缺和泛化能力
      • 传统的时空预测方法在面对数据稀缺或稀疏的情况下表现不佳,且泛化能力有限
    • ------>论文提出了STG-LLM(Spatial-Temporal Graph-Large Language Model)
      • STG-Tokenizer
        • 时空图(graph)标记器(Tokenizer)
        • 将复杂的图数据转换为简洁的tokens,这些token能够捕捉空间和时间关系
      • STG-Adapter
        • 轻量级的适配器,包含线性编码和解码层,用于在LLMs和token化数据之间架起桥梁
        • 通过微调少量参数,使LLMs能够理解由STG-Tokenizer生成的token的语义,同时保留LLMs原有的自然语言理解能力

2 LLM+时空的几种可能方法

3 论文方法

4 实验

4.1 supervised比较

4.2 few shot 迁移能力

4.3 ablation study

相关推荐
SmartBrain16 分钟前
DeerFlow实践:华为LTC流程的评审智能体设计
华为·语言模型
东方佑17 分钟前
从音频到Token:构建原神角色语音识别模型的完整实践
人工智能·音视频·语音识别
dlraba80238 分钟前
基于 OpenCV 与 SIFT 算法的指纹识别系统实现:从匹配到可视化
人工智能·opencv·计算机视觉
shizidushu41 分钟前
Hugging Face NLP课程学习记录 - 3. 微调一个预训练模型
人工智能·学习·自然语言处理·微调·huggingface
格林威44 分钟前
机器视觉在半导体制造中有哪些检测应用
人工智能·数码相机·yolo·计算机视觉·视觉检测·制造·相机
月岛雫-1 小时前
“单标签/多标签” vs “二分类/多分类”
人工智能·分类·数据挖掘
云卓SKYDROID1 小时前
无人机飞行速度模块技术要点概述
人工智能·无人机·飞行速度·高科技·云卓科技
币须赢2 小时前
英伟达Thor芯片套件9月发货 “物理AI”有哪些?
大数据·人工智能
盼小辉丶2 小时前
Transformer实战(18)——微调Transformer语言模型进行回归分析
深度学习·语言模型·回归·transformer
格林威2 小时前
机器视觉检测如何使用360 度全景成像镜头进行AI 瑕疵检测
人工智能·深度学习·数码相机·机器学习·计算机视觉·视觉检测·相机