论文笔记:How Can Large Language Models Understand Spatial-Temporal Data?

arxiv 202401

1 intro

  • LLM在NLP和CV领域表现出色,但将它们应用于时空预测任务仍然面临挑战,主要问题包括:
    • 数据不匹配
      • 传统的LLMs设计用于处理序列文本数据,而时空数据具有复杂的结构和动态性,这两者之间存在显著差异
    • 模型设计限制
      • 现有的时空预测方法通常需要为特定领域设计专门的模型,这限制了模型的通用性和适应性
    • 数据稀缺和泛化能力
      • 传统的时空预测方法在面对数据稀缺或稀疏的情况下表现不佳,且泛化能力有限
    • ------>论文提出了STG-LLM(Spatial-Temporal Graph-Large Language Model)
      • STG-Tokenizer
        • 时空图(graph)标记器(Tokenizer)
        • 将复杂的图数据转换为简洁的tokens,这些token能够捕捉空间和时间关系
      • STG-Adapter
        • 轻量级的适配器,包含线性编码和解码层,用于在LLMs和token化数据之间架起桥梁
        • 通过微调少量参数,使LLMs能够理解由STG-Tokenizer生成的token的语义,同时保留LLMs原有的自然语言理解能力

2 LLM+时空的几种可能方法

3 论文方法

4 实验

4.1 supervised比较

4.2 few shot 迁移能力

4.3 ablation study

相关推荐
若天明28 分钟前
深度学习-计算机视觉-微调 Fine-tune
人工智能·python·深度学习·机器学习·计算机视觉·ai·cnn
爱喝奶茶的企鹅29 分钟前
Ethan独立开发新品速递 | 2025-08-19
人工智能
J_bean38 分钟前
Spring AI Alibaba 项目接入兼容 OpenAI API 的大模型
人工智能·spring·大模型·openai·spring ai·ai alibaba
SelectDB1 小时前
Apache Doris 4.0 AI 能力揭秘(一):AI 函数之 LLM 函数介绍
数据库·人工智能·数据分析
倔强青铜三1 小时前
苦练Python第39天:海象操作符 := 的入门、实战与避坑指南
人工智能·python·面试
飞哥数智坊1 小时前
GPT-5 初战:我用 Windsurf,体验了“结对编程”式的AI开发
人工智能·windsurf
数据超市1 小时前
香港数据合集:建筑物、手机基站、POI、职住数据、用地类型
大数据·人工智能·智能手机·数据挖掘·数据分析
视觉语言导航2 小时前
哈工深无人机目标导航新基准!UAV-ON:开放世界空中智能体目标导向导航基准测试
人工智能·深度学习·无人机·具身智能
yzx9910132 小时前
AI心理助手开发文档
人工智能·深度学习·机器学习
图灵学术计算机论文辅导2 小时前
论文推荐|迁移学习+多模态特征融合
论文阅读·人工智能·深度学习·计算机网络·算法·计算机视觉·目标跟踪